Katock commited on
Commit
557aafd
1 Parent(s): 719a597

同步更新官方的仓库

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +0 -1
  2. .gitignore +381 -1
  3. app.py +13 -12
  4. cluster/__init__.py +0 -29
  5. cluster/kmeans.py +0 -201
  6. cluster/train_cluster.py +0 -84
  7. configs/config.json +0 -0
  8. diffusion/data_loaders.py +0 -284
  9. diffusion/diffusion.py +0 -317
  10. diffusion/diffusion_onnx.py +0 -612
  11. diffusion/dpm_solver_pytorch.py +0 -1201
  12. diffusion/how to export onnx.md +0 -4
  13. diffusion/infer_gt_mel.py +0 -74
  14. diffusion/logger/__init__.py +0 -0
  15. diffusion/logger/saver.py +0 -150
  16. diffusion/logger/utils.py +0 -126
  17. diffusion/onnx_export.py +0 -226
  18. diffusion/solver.py +0 -195
  19. diffusion/unit2mel.py +0 -147
  20. diffusion/vocoder.py +0 -94
  21. diffusion/wavenet.py +0 -108
  22. inference/infer_tool.py +46 -132
  23. inference/infer_tool_grad.py +5 -9
  24. inference/slicer.py +2 -2
  25. inference_main.py +0 -181
  26. models.py +97 -33
  27. modules/DSConv.py +76 -0
  28. modules/F0Predictor/CrepeF0Predictor.py +5 -2
  29. modules/F0Predictor/DioF0Predictor.py +23 -34
  30. modules/F0Predictor/FCPEF0Predictor.py +109 -0
  31. modules/F0Predictor/HarvestF0Predictor.py +22 -34
  32. modules/F0Predictor/PMF0Predictor.py +23 -34
  33. modules/F0Predictor/RMVPEF0Predictor.py +107 -0
  34. modules/F0Predictor/crepe.py +11 -11
  35. modules/F0Predictor/fcpe/__init__.py +3 -0
  36. modules/F0Predictor/fcpe/model.py +262 -0
  37. modules/F0Predictor/fcpe/nvSTFT.py +133 -0
  38. modules/F0Predictor/fcpe/pcmer.py +369 -0
  39. modules/F0Predictor/rmvpe/__init__.py +10 -0
  40. modules/F0Predictor/rmvpe/constants.py +9 -0
  41. modules/F0Predictor/rmvpe/deepunet.py +190 -0
  42. modules/F0Predictor/rmvpe/inference.py +57 -0
  43. modules/F0Predictor/rmvpe/model.py +67 -0
  44. modules/F0Predictor/rmvpe/seq.py +20 -0
  45. modules/F0Predictor/rmvpe/spec.py +67 -0
  46. modules/F0Predictor/rmvpe/utils.py +107 -0
  47. modules/attentions.py +21 -7
  48. modules/commons.py +6 -11
  49. modules/enhancer.py +4 -2
  50. modules/losses.py +1 -4
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
.gitignore CHANGED
@@ -1,2 +1,382 @@
 
 
 
 
1
 
2
- *.pyc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Ignore Visual Studio temporary files, build results, and
2
+ ## files generated by popular Visual Studio add-ons.
3
+ ##
4
+ ## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
5
 
6
+ # User-specific files
7
+ *.rsuser
8
+ *.suo
9
+ *.user
10
+ *.userosscache
11
+ *.sln.docstates
12
+
13
+ # User-specific files (MonoDevelop/Xamarin Studio)
14
+ *.userprefs
15
+
16
+ # Mono auto generated files
17
+ mono_crash.*
18
+
19
+ # Build results
20
+ [Dd]ebug/
21
+ [Dd]ebugPublic/
22
+ [Rr]elease/
23
+ [Rr]eleases/
24
+ x64/
25
+ x86/
26
+ [Ww][Ii][Nn]32/
27
+ [Aa][Rr][Mm]/
28
+ [Aa][Rr][Mm]64/
29
+ bld/
30
+ [Bb]in/
31
+ [Oo]bj/
32
+ [Oo]ut/
33
+ [Ll]og/
34
+ [Ll]ogs/
35
+
36
+ # Visual Studio 2015/2017 cache/options directory
37
+ .vs/
38
+ # Uncomment if you have tasks that create the project's static files in wwwroot
39
+ #wwwroot/
40
+
41
+ # Visual Studio 2017 auto generated files
42
+ Generated\ Files/
43
+
44
+ # MSTest test Results
45
+ [Tt]est[Rr]esult*/
46
+ [Bb]uild[Ll]og.*
47
+
48
+ # NUnit
49
+ *.VisualState.xml
50
+ TestResult.xml
51
+ nunit-*.xml
52
+
53
+ # Build Results of an ATL Project
54
+ [Dd]ebugPS/
55
+ [Rr]eleasePS/
56
+ dlldata.c
57
+
58
+ # Benchmark Results
59
+ BenchmarkDotNet.Artifacts/
60
+
61
+ # .NET Core
62
+ project.lock.json
63
+ project.fragment.lock.json
64
+ artifacts/
65
+
66
+ # ASP.NET Scaffolding
67
+ ScaffoldingReadMe.txt
68
+
69
+ # StyleCop
70
+ StyleCopReport.xml
71
+
72
+ # Files built by Visual Studio
73
+ *_i.c
74
+ *_p.c
75
+ *_h.h
76
+ *.ilk
77
+ *.meta
78
+ *.obj
79
+ *.iobj
80
+ *.pch
81
+ *.pdb
82
+ *.ipdb
83
+ *.pgc
84
+ *.pgd
85
+ *.rsp
86
+ *.sbr
87
+ *.tlb
88
+ *.tli
89
+ *.tlh
90
+ *.tmp
91
+ *.tmp_proj
92
+ *_wpftmp.csproj
93
+ *.log
94
+ *.vspscc
95
+ *.vssscc
96
+ .builds
97
+ *.pidb
98
+ *.svclog
99
+ *.scc
100
+
101
+ # Chutzpah Test files
102
+ _Chutzpah*
103
+
104
+ # Visual C++ cache files
105
+ ipch/
106
+ *.aps
107
+ *.ncb
108
+ *.opendb
109
+ *.opensdf
110
+ *.sdf
111
+ *.cachefile
112
+ *.VC.db
113
+ *.VC.VC.opendb
114
+
115
+ # Visual Studio profiler
116
+ *.psess
117
+ *.vsp
118
+ *.vspx
119
+ *.sap
120
+
121
+ # Visual Studio Trace Files
122
+ *.e2e
123
+
124
+ # TFS 2012 Local Workspace
125
+ $tf/
126
+
127
+ # Guidance Automation Toolkit
128
+ *.gpState
129
+
130
+ # ReSharper is a .NET coding add-in
131
+ _ReSharper*/
132
+ *.[Rr]e[Ss]harper
133
+ *.DotSettings.user
134
+
135
+ # TeamCity is a build add-in
136
+ _TeamCity*
137
+
138
+ # DotCover is a Code Coverage Tool
139
+ *.dotCover
140
+
141
+ # AxoCover is a Code Coverage Tool
142
+ .axoCover/*
143
+ !.axoCover/settings.json
144
+
145
+ # Coverlet is a free, cross platform Code Coverage Tool
146
+ coverage*.json
147
+ coverage*.xml
148
+ coverage*.info
149
+
150
+ # Visual Studio code coverage results
151
+ *.coverage
152
+ *.coveragexml
153
+
154
+ # NCrunch
155
+ _NCrunch_*
156
+ .*crunch*.local.xml
157
+ nCrunchTemp_*
158
+
159
+ # MightyMoose
160
+ *.mm.*
161
+ AutoTest.Net/
162
+
163
+ # Web workbench (sass)
164
+ .sass-cache/
165
+
166
+ # Installshield output folder
167
+ [Ee]xpress/
168
+
169
+ # DocProject is a documentation generator add-in
170
+ DocProject/buildhelp/
171
+ DocProject/Help/*.HxT
172
+ DocProject/Help/*.HxC
173
+ DocProject/Help/*.hhc
174
+ DocProject/Help/*.hhk
175
+ DocProject/Help/*.hhp
176
+ DocProject/Help/Html2
177
+ DocProject/Help/html
178
+
179
+ # Click-Once directory
180
+ publish/
181
+
182
+ # Publish Web Output
183
+ *.[Pp]ublish.xml
184
+ *.azurePubxml
185
+ # Note: Comment the next line if you want to checkin your web deploy settings,
186
+ # but database connection strings (with potential passwords) will be unencrypted
187
+ *.pubxml
188
+ *.publishproj
189
+
190
+ # Microsoft Azure Web App publish settings. Comment the next line if you want to
191
+ # checkin your Azure Web App publish settings, but sensitive information contained
192
+ # in these scripts will be unencrypted
193
+ PublishScripts/
194
+
195
+ # NuGet Packages
196
+ *.nupkg
197
+ # NuGet Symbol Packages
198
+ *.snupkg
199
+ # The packages folder can be ignored because of Package Restore
200
+ **/[Pp]ackages/*
201
+ # except build/, which is used as an MSBuild target.
202
+ !**/[Pp]ackages/build/
203
+ # Uncomment if necessary however generally it will be regenerated when needed
204
+ #!**/[Pp]ackages/repositories.config
205
+ # NuGet v3's project.json files produces more ignorable files
206
+ *.nuget.props
207
+ *.nuget.targets
208
+
209
+ # Microsoft Azure Build Output
210
+ csx/
211
+ *.build.csdef
212
+
213
+ # Microsoft Azure Emulator
214
+ ecf/
215
+ rcf/
216
+
217
+ # Windows Store app package directories and files
218
+ AppPackages/
219
+ BundleArtifacts/
220
+ Package.StoreAssociation.xml
221
+ _pkginfo.txt
222
+ *.appx
223
+ *.appxbundle
224
+ *.appxupload
225
+
226
+ # Visual Studio cache files
227
+ # files ending in .cache can be ignored
228
+ *.[Cc]ache
229
+ # but keep track of directories ending in .cache
230
+ !?*.[Cc]ache/
231
+
232
+ # Others
233
+ ClientBin/
234
+ ~$*
235
+ *~
236
+ *.dbmdl
237
+ *.dbproj.schemaview
238
+ *.jfm
239
+ *.pfx
240
+ *.publishsettings
241
+ orleans.codegen.cs
242
+
243
+ # Including strong name files can present a security risk
244
+ # (https://github.com/github/gitignore/pull/2483#issue-259490424)
245
+ #*.snk
246
+
247
+ # Since there are multiple workflows, uncomment next line to ignore bower_components
248
+ # (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
249
+ #bower_components/
250
+
251
+ # RIA/Silverlight projects
252
+ Generated_Code/
253
+
254
+ # Backup & report files from converting an old project file
255
+ # to a newer Visual Studio version. Backup files are not needed,
256
+ # because we have git ;-)
257
+ _UpgradeReport_Files/
258
+ Backup*/
259
+ UpgradeLog*.XML
260
+ UpgradeLog*.htm
261
+ ServiceFabricBackup/
262
+ *.rptproj.bak
263
+
264
+ # SQL Server files
265
+ *.mdf
266
+ *.ldf
267
+ *.ndf
268
+
269
+ # Business Intelligence projects
270
+ *.rdl.data
271
+ *.bim.layout
272
+ *.bim_*.settings
273
+ *.rptproj.rsuser
274
+ *- [Bb]ackup.rdl
275
+ *- [Bb]ackup ([0-9]).rdl
276
+ *- [Bb]ackup ([0-9][0-9]).rdl
277
+
278
+ # Microsoft Fakes
279
+ FakesAssemblies/
280
+
281
+ # GhostDoc plugin setting file
282
+ *.GhostDoc.xml
283
+
284
+ # Node.js Tools for Visual Studio
285
+ .ntvs_analysis.dat
286
+ node_modules/
287
+
288
+ # Visual Studio 6 build log
289
+ *.plg
290
+
291
+ # Visual Studio 6 workspace options file
292
+ *.opt
293
+
294
+ # Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
295
+ *.vbw
296
+
297
+ # Visual Studio LightSwitch build output
298
+ **/*.HTMLClient/GeneratedArtifacts
299
+ **/*.DesktopClient/GeneratedArtifacts
300
+ **/*.DesktopClient/ModelManifest.xml
301
+ **/*.Server/GeneratedArtifacts
302
+ **/*.Server/ModelManifest.xml
303
+ _Pvt_Extensions
304
+
305
+ # Paket dependency manager
306
+ .paket/paket.exe
307
+ paket-files/
308
+
309
+ # FAKE - F# Make
310
+ .fake/
311
+
312
+ # CodeRush personal settings
313
+ .cr/personal
314
+
315
+ # Python Tools for Visual Studio (PTVS)
316
+ __pycache__/
317
+
318
+
319
+ # Cake - Uncomment if you are using it
320
+ # tools/**
321
+ # !tools/packages.config
322
+
323
+ # Tabs Studio
324
+ *.tss
325
+
326
+ # Telerik's JustMock configuration file
327
+ *.jmconfig
328
+
329
+ # BizTalk build output
330
+ *.btp.cs
331
+ *.btm.cs
332
+ *.odx.cs
333
+ *.xsd.cs
334
+
335
+ # OpenCover UI analysis results
336
+ OpenCover/
337
+
338
+ # Azure Stream Analytics local run output
339
+ ASALocalRun/
340
+
341
+ # MSBuild Binary and Structured Log
342
+ *.binlog
343
+
344
+ # NVidia Nsight GPU debugger configuration file
345
+ *.nvuser
346
+
347
+ # MFractors (Xamarin productivity tool) working folder
348
+ .mfractor/
349
+
350
+ # Local History for Visual Studio
351
+ .localhistory/
352
+
353
+ # BeatPulse healthcheck temp database
354
+ healthchecksdb
355
+
356
+ # Backup folder for Package Reference Convert tool in Visual Studio 2017
357
+ MigrationBackup/
358
+
359
+ # Ionide (cross platform F# VS Code tools) working folder
360
+ .ionide/
361
+
362
+ # Fody - auto-generated XML schema
363
+ FodyWeavers.xsd
364
+
365
+ # build
366
+ build
367
+ monotonic_align/core.c
368
+ *.o
369
+ *.so
370
+ *.dll
371
+
372
+ # data
373
+ /config.json
374
+ /*.pth
375
+ *.wav
376
+ /monotonic_align/monotonic_align
377
+ /resources
378
+ /MoeGoe.spec
379
+ /dist/MoeGoe
380
+ /dist
381
+
382
+ .idea
app.py CHANGED
@@ -2,17 +2,16 @@ import argparse
2
  import logging
3
  import os
4
  import re
5
- import tempfile
6
-
7
- import edge_tts
8
- import gradio as gr
9
  import gradio.processing_utils as gr_pu
 
10
  import librosa
11
  import numpy as np
12
  import soundfile
13
  from scipy.io import wavfile
14
-
 
15
  import utils
 
16
  from inference.infer_tool import Svc
17
 
18
  logging.getLogger('numba').setLevel(logging.WARNING)
@@ -29,7 +28,10 @@ tts_voice = {
29
  "英文女": "en-US-AnaNeural"
30
  }
31
 
32
- hubert_model = utils.get_speech_encoder("vec768l12", device="cpu")
 
 
 
33
 
34
 
35
  def create_fn(model, spk):
@@ -43,7 +45,8 @@ def create_fn(model, spk):
43
  audio = librosa.to_mono(audio.transpose(1, 0))
44
  temp_path = "temp.wav"
45
  soundfile.write(temp_path, audio, sampling_rate, format="wav")
46
- model.hubert_model = hubert_model
 
47
  out_audio = model.slice_inference(raw_audio_path=temp_path,
48
  spk=spk,
49
  slice_db=-40,
@@ -63,9 +66,7 @@ def create_fn(model, spk):
63
  input_text = re.sub(r"[\n\,\(\) ]", "", input_text)
64
  voice = tts_voice[gender]
65
  ratestr = "+{:.0%}".format(tts_rate) if tts_rate >= 0 else "{:.0%}".format(tts_rate)
66
- communicate = edge_tts.Communicate(text=input_text,
67
- voice=voice,
68
- rate=ratestr)
69
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
70
  temp_path = tmp_file.name
71
  await communicate.save(temp_path)
@@ -107,8 +108,8 @@ if __name__ == '__main__':
107
  with gr.Column():
108
  with gr.Row():
109
  vc_transform = gr.Number(label="音高调整 (正负半音,12为1个八度)", value=0)
110
- f0_predictor = gr.Radio(label="f0预测器 (harvest适合讲话,crepe适合唱歌)",
111
- choices=['crepe', 'harvest', 'dio', 'pm'], value='crepe')
112
  auto_f0 = gr.Checkbox(label="自动音高预测 (文本转语音或讲话可选,会导致唱歌跑调)",
113
  value=False)
114
  with gr.Tabs():
 
2
  import logging
3
  import os
4
  import re
 
 
 
 
5
  import gradio.processing_utils as gr_pu
6
+ import gradio as gr
7
  import librosa
8
  import numpy as np
9
  import soundfile
10
  from scipy.io import wavfile
11
+ import tempfile
12
+ import edge_tts
13
  import utils
14
+
15
  from inference.infer_tool import Svc
16
 
17
  logging.getLogger('numba').setLevel(logging.WARNING)
 
28
  "英文女": "en-US-AnaNeural"
29
  }
30
 
31
+ hubert_dict = {
32
+ "vec768l12": utils.get_speech_encoder("vec768l12", device="cpu"),
33
+ "vec256l9": utils.get_speech_encoder("vec256l9", device="cpu")
34
+ }
35
 
36
 
37
  def create_fn(model, spk):
 
45
  audio = librosa.to_mono(audio.transpose(1, 0))
46
  temp_path = "temp.wav"
47
  soundfile.write(temp_path, audio, sampling_rate, format="wav")
48
+
49
+ model.hubert_model = hubert_dict[model.speech_encoder]
50
  out_audio = model.slice_inference(raw_audio_path=temp_path,
51
  spk=spk,
52
  slice_db=-40,
 
66
  input_text = re.sub(r"[\n\,\(\) ]", "", input_text)
67
  voice = tts_voice[gender]
68
  ratestr = "+{:.0%}".format(tts_rate) if tts_rate >= 0 else "{:.0%}".format(tts_rate)
69
+ communicate = edge_tts.Communicate(text=input_text, voice=voice, rate=ratestr)
 
 
70
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
71
  temp_path = tmp_file.name
72
  await communicate.save(temp_path)
 
108
  with gr.Column():
109
  with gr.Row():
110
  vc_transform = gr.Number(label="音高调整 (正负半音,12为1个八度)", value=0)
111
+ f0_predictor = gr.Radio(label="f0预测器 (推荐rmvpe)",
112
+ choices=['crepe', 'harvest', 'rmvpe'], value='rmvpe')
113
  auto_f0 = gr.Checkbox(label="自动音高预测 (文本转语音或讲话可选,会导致唱歌跑调)",
114
  value=False)
115
  with gr.Tabs():
cluster/__init__.py DELETED
@@ -1,29 +0,0 @@
1
- import numpy as np
2
- import torch
3
- from sklearn.cluster import KMeans
4
-
5
- def get_cluster_model(ckpt_path):
6
- checkpoint = torch.load(ckpt_path)
7
- kmeans_dict = {}
8
- for spk, ckpt in checkpoint.items():
9
- km = KMeans(ckpt["n_features_in_"])
10
- km.__dict__["n_features_in_"] = ckpt["n_features_in_"]
11
- km.__dict__["_n_threads"] = ckpt["_n_threads"]
12
- km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"]
13
- kmeans_dict[spk] = km
14
- return kmeans_dict
15
-
16
- def get_cluster_result(model, x, speaker):
17
- """
18
- x: np.array [t, 256]
19
- return cluster class result
20
- """
21
- return model[speaker].predict(x)
22
-
23
- def get_cluster_center_result(model, x,speaker):
24
- """x: np.array [t, 256]"""
25
- predict = model[speaker].predict(x)
26
- return model[speaker].cluster_centers_[predict]
27
-
28
- def get_center(model, x,speaker):
29
- return model[speaker].cluster_centers_[x]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cluster/kmeans.py DELETED
@@ -1,201 +0,0 @@
1
- import math,pdb
2
- import torch,pynvml
3
- from torch.nn.functional import normalize
4
- from time import time
5
- import numpy as np
6
- # device=torch.device("cuda:0")
7
- def _kpp(data: torch.Tensor, k: int, sample_size: int = -1):
8
- """ Picks k points in the data based on the kmeans++ method.
9
-
10
- Parameters
11
- ----------
12
- data : torch.Tensor
13
- Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
14
- data, rank 2 multidimensional data, in which case one
15
- row is one observation.
16
- k : int
17
- Number of samples to generate.
18
- sample_size : int
19
- sample data to avoid memory overflow during calculation
20
-
21
- Returns
22
- -------
23
- init : ndarray
24
- A 'k' by 'N' containing the initial centroids.
25
-
26
- References
27
- ----------
28
- .. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
29
- careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
30
- on Discrete Algorithms, 2007.
31
- .. [2] scipy/cluster/vq.py: _kpp
32
- """
33
- batch_size=data.shape[0]
34
- if batch_size>sample_size:
35
- data = data[torch.randint(0, batch_size,[sample_size], device=data.device)]
36
- dims = data.shape[1] if len(data.shape) > 1 else 1
37
- init = torch.zeros((k, dims)).to(data.device)
38
- r = torch.distributions.uniform.Uniform(0, 1)
39
- for i in range(k):
40
- if i == 0:
41
- init[i, :] = data[torch.randint(data.shape[0], [1])]
42
- else:
43
- D2 = torch.cdist(init[:i, :][None, :], data[None, :], p=2)[0].amin(dim=0)
44
- probs = D2 / torch.sum(D2)
45
- cumprobs = torch.cumsum(probs, dim=0)
46
- init[i, :] = data[torch.searchsorted(cumprobs, r.sample([1]).to(data.device))]
47
- return init
48
- class KMeansGPU:
49
- '''
50
- Kmeans clustering algorithm implemented with PyTorch
51
-
52
- Parameters:
53
- n_clusters: int,
54
- Number of clusters
55
-
56
- max_iter: int, default: 100
57
- Maximum number of iterations
58
-
59
- tol: float, default: 0.0001
60
- Tolerance
61
-
62
- verbose: int, default: 0
63
- Verbosity
64
-
65
- mode: {'euclidean', 'cosine'}, default: 'euclidean'
66
- Type of distance measure
67
-
68
- init_method: {'random', 'point', '++'}
69
- Type of initialization
70
-
71
- minibatch: {None, int}, default: None
72
- Batch size of MinibatchKmeans algorithm
73
- if None perform full KMeans algorithm
74
-
75
- Attributes:
76
- centroids: torch.Tensor, shape: [n_clusters, n_features]
77
- cluster centroids
78
- '''
79
- def __init__(self, n_clusters, max_iter=200, tol=1e-4, verbose=0, mode="euclidean",device=torch.device("cuda:0")):
80
- self.n_clusters = n_clusters
81
- self.max_iter = max_iter
82
- self.tol = tol
83
- self.verbose = verbose
84
- self.mode = mode
85
- self.device=device
86
- pynvml.nvmlInit()
87
- gpu_handle = pynvml.nvmlDeviceGetHandleByIndex(device.index)
88
- info = pynvml.nvmlDeviceGetMemoryInfo(gpu_handle)
89
- self.minibatch=int(33e6/self.n_clusters*info.free/ 1024 / 1024 / 1024)
90
- print("free_mem/GB:",info.free/ 1024 / 1024 / 1024,"minibatch:",self.minibatch)
91
-
92
- @staticmethod
93
- def cos_sim(a, b):
94
- """
95
- Compute cosine similarity of 2 sets of vectors
96
-
97
- Parameters:
98
- a: torch.Tensor, shape: [m, n_features]
99
-
100
- b: torch.Tensor, shape: [n, n_features]
101
- """
102
- return normalize(a, dim=-1) @ normalize(b, dim=-1).transpose(-2, -1)
103
-
104
- @staticmethod
105
- def euc_sim(a, b):
106
- """
107
- Compute euclidean similarity of 2 sets of vectors
108
- Parameters:
109
- a: torch.Tensor, shape: [m, n_features]
110
- b: torch.Tensor, shape: [n, n_features]
111
- """
112
- return 2 * a @ b.transpose(-2, -1) -(a**2).sum(dim=1)[..., :, None] - (b**2).sum(dim=1)[..., None, :]
113
-
114
- def max_sim(self, a, b):
115
- """
116
- Compute maximum similarity (or minimum distance) of each vector
117
- in a with all of the vectors in b
118
- Parameters:
119
- a: torch.Tensor, shape: [m, n_features]
120
- b: torch.Tensor, shape: [n, n_features]
121
- """
122
- if self.mode == 'cosine':
123
- sim_func = self.cos_sim
124
- elif self.mode == 'euclidean':
125
- sim_func = self.euc_sim
126
- sim = sim_func(a, b)
127
- max_sim_v, max_sim_i = sim.max(dim=-1)
128
- return max_sim_v, max_sim_i
129
-
130
- def fit_predict(self, X):
131
- """
132
- Combination of fit() and predict() methods.
133
- This is faster than calling fit() and predict() seperately.
134
- Parameters:
135
- X: torch.Tensor, shape: [n_samples, n_features]
136
- centroids: {torch.Tensor, None}, default: None
137
- if given, centroids will be initialized with given tensor
138
- if None, centroids will be randomly chosen from X
139
- Return:
140
- labels: torch.Tensor, shape: [n_samples]
141
-
142
- mini_=33kk/k*remain
143
- mini=min(mini_,fea_shape)
144
- offset=log2(k/1000)*1.5
145
- kpp_all=min(mini_*10/offset,fea_shape)
146
- kpp_sample=min(mini_/12/offset,fea_shape)
147
- """
148
- assert isinstance(X, torch.Tensor), "input must be torch.Tensor"
149
- assert X.dtype in [torch.half, torch.float, torch.double], "input must be floating point"
150
- assert X.ndim == 2, "input must be a 2d tensor with shape: [n_samples, n_features] "
151
- # print("verbose:%s"%self.verbose)
152
-
153
- offset = np.power(1.5,np.log(self.n_clusters / 1000))/np.log(2)
154
- with torch.no_grad():
155
- batch_size= X.shape[0]
156
- # print(self.minibatch, int(self.minibatch * 10 / offset), batch_size)
157
- start_time = time()
158
- if (self.minibatch*10//offset< batch_size):
159
- x = X[torch.randint(0, batch_size,[int(self.minibatch*10/offset)])].to(self.device)
160
- else:
161
- x = X.to(self.device)
162
- # print(x.device)
163
- self.centroids = _kpp(x, self.n_clusters, min(int(self.minibatch/12/offset),batch_size))
164
- del x
165
- torch.cuda.empty_cache()
166
- # self.centroids = self.centroids.to(self.device)
167
- num_points_in_clusters = torch.ones(self.n_clusters, device=self.device, dtype=X.dtype)#全1
168
- closest = None#[3098036]#int64
169
- if(self.minibatch>=batch_size//2 and self.minibatch<batch_size):
170
- X = X[torch.randint(0, batch_size,[self.minibatch])].to(self.device)
171
- elif(self.minibatch>=batch_size):
172
- X=X.to(self.device)
173
- for i in range(self.max_iter):
174
- iter_time = time()
175
- if self.minibatch<batch_size//2:#可用minibatch数太小,每次都得从内存倒腾到显存
176
- x = X[torch.randint(0, batch_size, [self.minibatch])].to(self.device)
177
- else:#否则直接全部缓存
178
- x = X
179
-
180
- closest = self.max_sim(a=x, b=self.centroids)[1].to(torch.int16)#[3098036]#int64#0~999
181
- matched_clusters, counts = closest.unique(return_counts=True)#int64#1k
182
- expanded_closest = closest[None].expand(self.n_clusters, -1)#[1000, 3098036]#int16#0~999
183
- mask = (expanded_closest==torch.arange(self.n_clusters, device=self.device)[:, None]).to(X.dtype)#==后者是int64*1000
184
- c_grad = mask @ x / mask.sum(-1)[..., :, None]
185
- c_grad[c_grad!=c_grad] = 0 # remove NaNs
186
- error = (c_grad - self.centroids).pow(2).sum()
187
- if self.minibatch is not None:
188
- lr = 1/num_points_in_clusters[:,None] * 0.9 + 0.1
189
- else:
190
- lr = 1
191
- matched_clusters=matched_clusters.long()
192
- num_points_in_clusters[matched_clusters] += counts#IndexError: tensors used as indices must be long, byte or bool tensors
193
- self.centroids = self.centroids * (1-lr) + c_grad * lr
194
- if self.verbose >= 2:
195
- print('iter:', i, 'error:', error.item(), 'time spent:', round(time()-iter_time, 4))
196
- if error <= self.tol:
197
- break
198
-
199
- if self.verbose >= 1:
200
- print(f'used {i+1} iterations ({round(time()-start_time, 4)}s) to cluster {batch_size} items into {self.n_clusters} clusters')
201
- return closest
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cluster/train_cluster.py DELETED
@@ -1,84 +0,0 @@
1
- import time,pdb
2
- import tqdm
3
- from time import time as ttime
4
- import os
5
- from pathlib import Path
6
- import logging
7
- import argparse
8
- from kmeans import KMeansGPU
9
- import torch
10
- import numpy as np
11
- from sklearn.cluster import KMeans,MiniBatchKMeans
12
-
13
- logging.basicConfig(level=logging.INFO)
14
- logger = logging.getLogger(__name__)
15
- from time import time as ttime
16
- import pynvml,torch
17
-
18
- def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False,use_gpu=False):#gpu_minibatch真拉,虽然库支持但是也不考虑
19
- logger.info(f"Loading features from {in_dir}")
20
- features = []
21
- nums = 0
22
- for path in tqdm.tqdm(in_dir.glob("*.soft.pt")):
23
- # for name in os.listdir(in_dir):
24
- # path="%s/%s"%(in_dir,name)
25
- features.append(torch.load(path,map_location="cpu").squeeze(0).numpy().T)
26
- # print(features[-1].shape)
27
- features = np.concatenate(features, axis=0)
28
- print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype)
29
- features = features.astype(np.float32)
30
- logger.info(f"Clustering features of shape: {features.shape}")
31
- t = time.time()
32
- if(use_gpu==False):
33
- if use_minibatch:
34
- kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
35
- else:
36
- kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
37
- else:
38
- kmeans = KMeansGPU(n_clusters=n_clusters, mode='euclidean', verbose=2 if verbose else 0,max_iter=500,tol=1e-2)#
39
- features=torch.from_numpy(features)#.to(device)
40
- labels = kmeans.fit_predict(features)#
41
-
42
- print(time.time()-t, "s")
43
-
44
- x = {
45
- "n_features_in_": kmeans.n_features_in_ if use_gpu==False else features.shape[1],
46
- "_n_threads": kmeans._n_threads if use_gpu==False else 4,
47
- "cluster_centers_": kmeans.cluster_centers_ if use_gpu==False else kmeans.centroids.cpu().numpy(),
48
- }
49
- print("end")
50
-
51
- return x
52
-
53
- if __name__ == "__main__":
54
- parser = argparse.ArgumentParser()
55
- parser.add_argument('--dataset', type=Path, default="./dataset/44k",
56
- help='path of training data directory')
57
- parser.add_argument('--output', type=Path, default="logs/44k",
58
- help='path of model output directory')
59
- parser.add_argument('--gpu',action='store_true', default=False ,
60
- help='to use GPU')
61
-
62
-
63
- args = parser.parse_args()
64
-
65
- checkpoint_dir = args.output
66
- dataset = args.dataset
67
- use_gpu = args.gpu
68
- n_clusters = 10000
69
-
70
- ckpt = {}
71
- for spk in os.listdir(dataset):
72
- if os.path.isdir(dataset/spk):
73
- print(f"train kmeans for {spk}...")
74
- in_dir = dataset/spk
75
- x = train_cluster(in_dir, n_clusters,use_minibatch=False,verbose=False,use_gpu=use_gpu)
76
- ckpt[spk] = x
77
-
78
- checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt"
79
- checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
80
- torch.save(
81
- ckpt,
82
- checkpoint_path,
83
- )
84
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/config.json DELETED
File without changes
diffusion/data_loaders.py DELETED
@@ -1,284 +0,0 @@
1
- import os
2
- import random
3
- import re
4
- import numpy as np
5
- import librosa
6
- import torch
7
- import random
8
- from utils import repeat_expand_2d
9
- from tqdm import tqdm
10
- from torch.utils.data import Dataset
11
-
12
- def traverse_dir(
13
- root_dir,
14
- extensions,
15
- amount=None,
16
- str_include=None,
17
- str_exclude=None,
18
- is_pure=False,
19
- is_sort=False,
20
- is_ext=True):
21
-
22
- file_list = []
23
- cnt = 0
24
- for root, _, files in os.walk(root_dir):
25
- for file in files:
26
- if any([file.endswith(f".{ext}") for ext in extensions]):
27
- # path
28
- mix_path = os.path.join(root, file)
29
- pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
30
-
31
- # amount
32
- if (amount is not None) and (cnt == amount):
33
- if is_sort:
34
- file_list.sort()
35
- return file_list
36
-
37
- # check string
38
- if (str_include is not None) and (str_include not in pure_path):
39
- continue
40
- if (str_exclude is not None) and (str_exclude in pure_path):
41
- continue
42
-
43
- if not is_ext:
44
- ext = pure_path.split('.')[-1]
45
- pure_path = pure_path[:-(len(ext)+1)]
46
- file_list.append(pure_path)
47
- cnt += 1
48
- if is_sort:
49
- file_list.sort()
50
- return file_list
51
-
52
-
53
- def get_data_loaders(args, whole_audio=False):
54
- data_train = AudioDataset(
55
- filelists = args.data.training_files,
56
- waveform_sec=args.data.duration,
57
- hop_size=args.data.block_size,
58
- sample_rate=args.data.sampling_rate,
59
- load_all_data=args.train.cache_all_data,
60
- whole_audio=whole_audio,
61
- extensions=args.data.extensions,
62
- n_spk=args.model.n_spk,
63
- spk=args.spk,
64
- device=args.train.cache_device,
65
- fp16=args.train.cache_fp16,
66
- use_aug=True)
67
- loader_train = torch.utils.data.DataLoader(
68
- data_train ,
69
- batch_size=args.train.batch_size if not whole_audio else 1,
70
- shuffle=True,
71
- num_workers=args.train.num_workers if args.train.cache_device=='cpu' else 0,
72
- persistent_workers=(args.train.num_workers > 0) if args.train.cache_device=='cpu' else False,
73
- pin_memory=True if args.train.cache_device=='cpu' else False
74
- )
75
- data_valid = AudioDataset(
76
- filelists = args.data.validation_files,
77
- waveform_sec=args.data.duration,
78
- hop_size=args.data.block_size,
79
- sample_rate=args.data.sampling_rate,
80
- load_all_data=args.train.cache_all_data,
81
- whole_audio=True,
82
- spk=args.spk,
83
- extensions=args.data.extensions,
84
- n_spk=args.model.n_spk)
85
- loader_valid = torch.utils.data.DataLoader(
86
- data_valid,
87
- batch_size=1,
88
- shuffle=False,
89
- num_workers=0,
90
- pin_memory=True
91
- )
92
- return loader_train, loader_valid
93
-
94
-
95
- class AudioDataset(Dataset):
96
- def __init__(
97
- self,
98
- filelists,
99
- waveform_sec,
100
- hop_size,
101
- sample_rate,
102
- spk,
103
- load_all_data=True,
104
- whole_audio=False,
105
- extensions=['wav'],
106
- n_spk=1,
107
- device='cpu',
108
- fp16=False,
109
- use_aug=False,
110
- ):
111
- super().__init__()
112
-
113
- self.waveform_sec = waveform_sec
114
- self.sample_rate = sample_rate
115
- self.hop_size = hop_size
116
- self.filelists = filelists
117
- self.whole_audio = whole_audio
118
- self.use_aug = use_aug
119
- self.data_buffer={}
120
- self.pitch_aug_dict = {}
121
- # np.load(os.path.join(self.path_root, 'pitch_aug_dict.npy'), allow_pickle=True).item()
122
- if load_all_data:
123
- print('Load all the data filelists:', filelists)
124
- else:
125
- print('Load the f0, volume data filelists:', filelists)
126
- with open(filelists,"r") as f:
127
- self.paths = f.read().splitlines()
128
- for name_ext in tqdm(self.paths, total=len(self.paths)):
129
- name = os.path.splitext(name_ext)[0]
130
- path_audio = name_ext
131
- duration = librosa.get_duration(filename = path_audio, sr = self.sample_rate)
132
-
133
- path_f0 = name_ext + ".f0.npy"
134
- f0,_ = np.load(path_f0,allow_pickle=True)
135
- f0 = torch.from_numpy(np.array(f0,dtype=float)).float().unsqueeze(-1).to(device)
136
-
137
- path_volume = name_ext + ".vol.npy"
138
- volume = np.load(path_volume)
139
- volume = torch.from_numpy(volume).float().unsqueeze(-1).to(device)
140
-
141
- path_augvol = name_ext + ".aug_vol.npy"
142
- aug_vol = np.load(path_augvol)
143
- aug_vol = torch.from_numpy(aug_vol).float().unsqueeze(-1).to(device)
144
-
145
- if n_spk is not None and n_spk > 1:
146
- spk_name = name_ext.split("/")[-2]
147
- spk_id = spk[spk_name] if spk_name in spk else 0
148
- if spk_id < 0 or spk_id >= n_spk:
149
- raise ValueError(' [x] Muiti-speaker traing error : spk_id must be a positive integer from 0 to n_spk-1 ')
150
- else:
151
- spk_id = 0
152
- spk_id = torch.LongTensor(np.array([spk_id])).to(device)
153
-
154
- if load_all_data:
155
- '''
156
- audio, sr = librosa.load(path_audio, sr=self.sample_rate)
157
- if len(audio.shape) > 1:
158
- audio = librosa.to_mono(audio)
159
- audio = torch.from_numpy(audio).to(device)
160
- '''
161
- path_mel = name_ext + ".mel.npy"
162
- mel = np.load(path_mel)
163
- mel = torch.from_numpy(mel).to(device)
164
-
165
- path_augmel = name_ext + ".aug_mel.npy"
166
- aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
167
- aug_mel = np.array(aug_mel,dtype=float)
168
- aug_mel = torch.from_numpy(aug_mel).to(device)
169
- self.pitch_aug_dict[name_ext] = keyshift
170
-
171
- path_units = name_ext + ".soft.pt"
172
- units = torch.load(path_units).to(device)
173
- units = units[0]
174
- units = repeat_expand_2d(units,f0.size(0)).transpose(0,1)
175
-
176
- if fp16:
177
- mel = mel.half()
178
- aug_mel = aug_mel.half()
179
- units = units.half()
180
-
181
- self.data_buffer[name_ext] = {
182
- 'duration': duration,
183
- 'mel': mel,
184
- 'aug_mel': aug_mel,
185
- 'units': units,
186
- 'f0': f0,
187
- 'volume': volume,
188
- 'aug_vol': aug_vol,
189
- 'spk_id': spk_id
190
- }
191
- else:
192
- path_augmel = name_ext + ".aug_mel.npy"
193
- aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
194
- self.pitch_aug_dict[name_ext] = keyshift
195
- self.data_buffer[name_ext] = {
196
- 'duration': duration,
197
- 'f0': f0,
198
- 'volume': volume,
199
- 'aug_vol': aug_vol,
200
- 'spk_id': spk_id
201
- }
202
-
203
-
204
- def __getitem__(self, file_idx):
205
- name_ext = self.paths[file_idx]
206
- data_buffer = self.data_buffer[name_ext]
207
- # check duration. if too short, then skip
208
- if data_buffer['duration'] < (self.waveform_sec + 0.1):
209
- return self.__getitem__( (file_idx + 1) % len(self.paths))
210
-
211
- # get item
212
- return self.get_data(name_ext, data_buffer)
213
-
214
- def get_data(self, name_ext, data_buffer):
215
- name = os.path.splitext(name_ext)[0]
216
- frame_resolution = self.hop_size / self.sample_rate
217
- duration = data_buffer['duration']
218
- waveform_sec = duration if self.whole_audio else self.waveform_sec
219
-
220
- # load audio
221
- idx_from = 0 if self.whole_audio else random.uniform(0, duration - waveform_sec - 0.1)
222
- start_frame = int(idx_from / frame_resolution)
223
- units_frame_len = int(waveform_sec / frame_resolution)
224
- aug_flag = random.choice([True, False]) and self.use_aug
225
- '''
226
- audio = data_buffer.get('audio')
227
- if audio is None:
228
- path_audio = os.path.join(self.path_root, 'audio', name) + '.wav'
229
- audio, sr = librosa.load(
230
- path_audio,
231
- sr = self.sample_rate,
232
- offset = start_frame * frame_resolution,
233
- duration = waveform_sec)
234
- if len(audio.shape) > 1:
235
- audio = librosa.to_mono(audio)
236
- # clip audio into N seconds
237
- audio = audio[ : audio.shape[-1] // self.hop_size * self.hop_size]
238
- audio = torch.from_numpy(audio).float()
239
- else:
240
- audio = audio[start_frame * self.hop_size : (start_frame + units_frame_len) * self.hop_size]
241
- '''
242
- # load mel
243
- mel_key = 'aug_mel' if aug_flag else 'mel'
244
- mel = data_buffer.get(mel_key)
245
- if mel is None:
246
- mel = name_ext + ".mel.npy"
247
- mel = np.load(mel)
248
- mel = mel[start_frame : start_frame + units_frame_len]
249
- mel = torch.from_numpy(mel).float()
250
- else:
251
- mel = mel[start_frame : start_frame + units_frame_len]
252
-
253
- # load f0
254
- f0 = data_buffer.get('f0')
255
- aug_shift = 0
256
- if aug_flag:
257
- aug_shift = self.pitch_aug_dict[name_ext]
258
- f0_frames = 2 ** (aug_shift / 12) * f0[start_frame : start_frame + units_frame_len]
259
-
260
- # load units
261
- units = data_buffer.get('units')
262
- if units is None:
263
- path_units = name_ext + ".soft.pt"
264
- units = torch.load(path_units)
265
- units = units[0]
266
- units = repeat_expand_2d(units,f0.size(0)).transpose(0,1)
267
-
268
- units = units[start_frame : start_frame + units_frame_len]
269
-
270
- # load volume
271
- vol_key = 'aug_vol' if aug_flag else 'volume'
272
- volume = data_buffer.get(vol_key)
273
- volume_frames = volume[start_frame : start_frame + units_frame_len]
274
-
275
- # load spk_id
276
- spk_id = data_buffer.get('spk_id')
277
-
278
- # load shift
279
- aug_shift = torch.from_numpy(np.array([[aug_shift]])).float()
280
-
281
- return dict(mel=mel, f0=f0_frames, volume=volume_frames, units=units, spk_id=spk_id, aug_shift=aug_shift, name=name, name_ext=name_ext)
282
-
283
- def __len__(self):
284
- return len(self.paths)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diffusion/diffusion.py DELETED
@@ -1,317 +0,0 @@
1
- from collections import deque
2
- from functools import partial
3
- from inspect import isfunction
4
- import torch.nn.functional as F
5
- import librosa.sequence
6
- import numpy as np
7
- import torch
8
- from torch import nn
9
- from tqdm import tqdm
10
-
11
-
12
- def exists(x):
13
- return x is not None
14
-
15
-
16
- def default(val, d):
17
- if exists(val):
18
- return val
19
- return d() if isfunction(d) else d
20
-
21
-
22
- def extract(a, t, x_shape):
23
- b, *_ = t.shape
24
- out = a.gather(-1, t)
25
- return out.reshape(b, *((1,) * (len(x_shape) - 1)))
26
-
27
-
28
- def noise_like(shape, device, repeat=False):
29
- repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
30
- noise = lambda: torch.randn(shape, device=device)
31
- return repeat_noise() if repeat else noise()
32
-
33
-
34
- def linear_beta_schedule(timesteps, max_beta=0.02):
35
- """
36
- linear schedule
37
- """
38
- betas = np.linspace(1e-4, max_beta, timesteps)
39
- return betas
40
-
41
-
42
- def cosine_beta_schedule(timesteps, s=0.008):
43
- """
44
- cosine schedule
45
- as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
46
- """
47
- steps = timesteps + 1
48
- x = np.linspace(0, steps, steps)
49
- alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
50
- alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
51
- betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
52
- return np.clip(betas, a_min=0, a_max=0.999)
53
-
54
-
55
- beta_schedule = {
56
- "cosine": cosine_beta_schedule,
57
- "linear": linear_beta_schedule,
58
- }
59
-
60
-
61
- class GaussianDiffusion(nn.Module):
62
- def __init__(self,
63
- denoise_fn,
64
- out_dims=128,
65
- timesteps=1000,
66
- k_step=1000,
67
- max_beta=0.02,
68
- spec_min=-12,
69
- spec_max=2):
70
- super().__init__()
71
- self.denoise_fn = denoise_fn
72
- self.out_dims = out_dims
73
- betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
74
-
75
- alphas = 1. - betas
76
- alphas_cumprod = np.cumprod(alphas, axis=0)
77
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
78
-
79
- timesteps, = betas.shape
80
- self.num_timesteps = int(timesteps)
81
- self.k_step = k_step
82
-
83
- self.noise_list = deque(maxlen=4)
84
-
85
- to_torch = partial(torch.tensor, dtype=torch.float32)
86
-
87
- self.register_buffer('betas', to_torch(betas))
88
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
89
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
90
-
91
- # calculations for diffusion q(x_t | x_{t-1}) and others
92
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
93
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
94
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
95
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
96
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
97
-
98
- # calculations for posterior q(x_{t-1} | x_t, x_0)
99
- posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
100
- # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
101
- self.register_buffer('posterior_variance', to_torch(posterior_variance))
102
- # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
103
- self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
104
- self.register_buffer('posterior_mean_coef1', to_torch(
105
- betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
106
- self.register_buffer('posterior_mean_coef2', to_torch(
107
- (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
108
-
109
- self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
110
- self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
111
-
112
- def q_mean_variance(self, x_start, t):
113
- mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
114
- variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
115
- log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
116
- return mean, variance, log_variance
117
-
118
- def predict_start_from_noise(self, x_t, t, noise):
119
- return (
120
- extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
121
- extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
122
- )
123
-
124
- def q_posterior(self, x_start, x_t, t):
125
- posterior_mean = (
126
- extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
127
- extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
128
- )
129
- posterior_variance = extract(self.posterior_variance, t, x_t.shape)
130
- posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
131
- return posterior_mean, posterior_variance, posterior_log_variance_clipped
132
-
133
- def p_mean_variance(self, x, t, cond):
134
- noise_pred = self.denoise_fn(x, t, cond=cond)
135
- x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
136
-
137
- x_recon.clamp_(-1., 1.)
138
-
139
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
140
- return model_mean, posterior_variance, posterior_log_variance
141
-
142
- @torch.no_grad()
143
- def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
144
- b, *_, device = *x.shape, x.device
145
- model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
146
- noise = noise_like(x.shape, device, repeat_noise)
147
- # no noise when t == 0
148
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
149
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
150
-
151
- @torch.no_grad()
152
- def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
153
- """
154
- Use the PLMS method from
155
- [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
156
- """
157
-
158
- def get_x_pred(x, noise_t, t):
159
- a_t = extract(self.alphas_cumprod, t, x.shape)
160
- a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
161
- a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
162
-
163
- x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
164
- a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
165
- x_pred = x + x_delta
166
-
167
- return x_pred
168
-
169
- noise_list = self.noise_list
170
- noise_pred = self.denoise_fn(x, t, cond=cond)
171
-
172
- if len(noise_list) == 0:
173
- x_pred = get_x_pred(x, noise_pred, t)
174
- noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
175
- noise_pred_prime = (noise_pred + noise_pred_prev) / 2
176
- elif len(noise_list) == 1:
177
- noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
178
- elif len(noise_list) == 2:
179
- noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
180
- else:
181
- noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
182
-
183
- x_prev = get_x_pred(x, noise_pred_prime, t)
184
- noise_list.append(noise_pred)
185
-
186
- return x_prev
187
-
188
- def q_sample(self, x_start, t, noise=None):
189
- noise = default(noise, lambda: torch.randn_like(x_start))
190
- return (
191
- extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
192
- extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
193
- )
194
-
195
- def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
196
- noise = default(noise, lambda: torch.randn_like(x_start))
197
-
198
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
199
- x_recon = self.denoise_fn(x_noisy, t, cond)
200
-
201
- if loss_type == 'l1':
202
- loss = (noise - x_recon).abs().mean()
203
- elif loss_type == 'l2':
204
- loss = F.mse_loss(noise, x_recon)
205
- else:
206
- raise NotImplementedError()
207
-
208
- return loss
209
-
210
- def forward(self,
211
- condition,
212
- gt_spec=None,
213
- infer=True,
214
- infer_speedup=10,
215
- method='dpm-solver',
216
- k_step=300,
217
- use_tqdm=True):
218
- """
219
- conditioning diffusion, use fastspeech2 encoder output as the condition
220
- """
221
- cond = condition.transpose(1, 2)
222
- b, device = condition.shape[0], condition.device
223
-
224
- if not infer:
225
- spec = self.norm_spec(gt_spec)
226
- t = torch.randint(0, self.k_step, (b,), device=device).long()
227
- norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
228
- return self.p_losses(norm_spec, t, cond=cond)
229
- else:
230
- shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
231
-
232
- if gt_spec is None:
233
- t = self.k_step
234
- x = torch.randn(shape, device=device)
235
- else:
236
- t = k_step
237
- norm_spec = self.norm_spec(gt_spec)
238
- norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
239
- x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
240
-
241
- if method is not None and infer_speedup > 1:
242
- if method == 'dpm-solver':
243
- from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
244
- # 1. Define the noise schedule.
245
- noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
246
-
247
- # 2. Convert your discrete-time `model` to the continuous-time
248
- # noise prediction model. Here is an example for a diffusion model
249
- # `model` with the noise prediction type ("noise") .
250
- def my_wrapper(fn):
251
- def wrapped(x, t, **kwargs):
252
- ret = fn(x, t, **kwargs)
253
- if use_tqdm:
254
- self.bar.update(1)
255
- return ret
256
-
257
- return wrapped
258
-
259
- model_fn = model_wrapper(
260
- my_wrapper(self.denoise_fn),
261
- noise_schedule,
262
- model_type="noise", # or "x_start" or "v" or "score"
263
- model_kwargs={"cond": cond}
264
- )
265
-
266
- # 3. Define dpm-solver and sample by singlestep DPM-Solver.
267
- # (We recommend singlestep DPM-Solver for unconditional sampling)
268
- # You can adjust the `steps` to balance the computation
269
- # costs and the sample quality.
270
- dpm_solver = DPM_Solver(model_fn, noise_schedule)
271
-
272
- steps = t // infer_speedup
273
- if use_tqdm:
274
- self.bar = tqdm(desc="sample time step", total=steps)
275
- x = dpm_solver.sample(
276
- x,
277
- steps=steps,
278
- order=3,
279
- skip_type="time_uniform",
280
- method="singlestep",
281
- )
282
- if use_tqdm:
283
- self.bar.close()
284
- elif method == 'pndm':
285
- self.noise_list = deque(maxlen=4)
286
- if use_tqdm:
287
- for i in tqdm(
288
- reversed(range(0, t, infer_speedup)), desc='sample time step',
289
- total=t // infer_speedup,
290
- ):
291
- x = self.p_sample_plms(
292
- x, torch.full((b,), i, device=device, dtype=torch.long),
293
- infer_speedup, cond=cond
294
- )
295
- else:
296
- for i in reversed(range(0, t, infer_speedup)):
297
- x = self.p_sample_plms(
298
- x, torch.full((b,), i, device=device, dtype=torch.long),
299
- infer_speedup, cond=cond
300
- )
301
- else:
302
- raise NotImplementedError(method)
303
- else:
304
- if use_tqdm:
305
- for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
306
- x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
307
- else:
308
- for i in reversed(range(0, t)):
309
- x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
310
- x = x.squeeze(1).transpose(1, 2) # [B, T, M]
311
- return self.denorm_spec(x)
312
-
313
- def norm_spec(self, x):
314
- return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
315
-
316
- def denorm_spec(self, x):
317
- return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diffusion/diffusion_onnx.py DELETED
@@ -1,612 +0,0 @@
1
- from collections import deque
2
- from functools import partial
3
- from inspect import isfunction
4
- import torch.nn.functional as F
5
- import librosa.sequence
6
- import numpy as np
7
- from torch.nn import Conv1d
8
- from torch.nn import Mish
9
- import torch
10
- from torch import nn
11
- from tqdm import tqdm
12
- import math
13
-
14
-
15
- def exists(x):
16
- return x is not None
17
-
18
-
19
- def default(val, d):
20
- if exists(val):
21
- return val
22
- return d() if isfunction(d) else d
23
-
24
-
25
- def extract(a, t):
26
- return a[t].reshape((1, 1, 1, 1))
27
-
28
-
29
- def noise_like(shape, device, repeat=False):
30
- repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
31
- noise = lambda: torch.randn(shape, device=device)
32
- return repeat_noise() if repeat else noise()
33
-
34
-
35
- def linear_beta_schedule(timesteps, max_beta=0.02):
36
- """
37
- linear schedule
38
- """
39
- betas = np.linspace(1e-4, max_beta, timesteps)
40
- return betas
41
-
42
-
43
- def cosine_beta_schedule(timesteps, s=0.008):
44
- """
45
- cosine schedule
46
- as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
47
- """
48
- steps = timesteps + 1
49
- x = np.linspace(0, steps, steps)
50
- alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
51
- alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
52
- betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
53
- return np.clip(betas, a_min=0, a_max=0.999)
54
-
55
-
56
- beta_schedule = {
57
- "cosine": cosine_beta_schedule,
58
- "linear": linear_beta_schedule,
59
- }
60
-
61
-
62
- def extract_1(a, t):
63
- return a[t].reshape((1, 1, 1, 1))
64
-
65
-
66
- def predict_stage0(noise_pred, noise_pred_prev):
67
- return (noise_pred + noise_pred_prev) / 2
68
-
69
-
70
- def predict_stage1(noise_pred, noise_list):
71
- return (noise_pred * 3
72
- - noise_list[-1]) / 2
73
-
74
-
75
- def predict_stage2(noise_pred, noise_list):
76
- return (noise_pred * 23
77
- - noise_list[-1] * 16
78
- + noise_list[-2] * 5) / 12
79
-
80
-
81
- def predict_stage3(noise_pred, noise_list):
82
- return (noise_pred * 55
83
- - noise_list[-1] * 59
84
- + noise_list[-2] * 37
85
- - noise_list[-3] * 9) / 24
86
-
87
-
88
- class SinusoidalPosEmb(nn.Module):
89
- def __init__(self, dim):
90
- super().__init__()
91
- self.dim = dim
92
- self.half_dim = dim // 2
93
- self.emb = 9.21034037 / (self.half_dim - 1)
94
- self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
95
- self.emb = self.emb.cpu()
96
-
97
- def forward(self, x):
98
- emb = self.emb * x
99
- emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
100
- return emb
101
-
102
-
103
- class ResidualBlock(nn.Module):
104
- def __init__(self, encoder_hidden, residual_channels, dilation):
105
- super().__init__()
106
- self.residual_channels = residual_channels
107
- self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
108
- self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
109
- self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
110
- self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
111
-
112
- def forward(self, x, conditioner, diffusion_step):
113
- diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
114
- conditioner = self.conditioner_projection(conditioner)
115
- y = x + diffusion_step
116
- y = self.dilated_conv(y) + conditioner
117
-
118
- gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
119
-
120
- y = torch.sigmoid(gate) * torch.tanh(filter_1)
121
- y = self.output_projection(y)
122
-
123
- residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
124
-
125
- return (x + residual) / 1.41421356, skip
126
-
127
-
128
- class DiffNet(nn.Module):
129
- def __init__(self, in_dims, n_layers, n_chans, n_hidden):
130
- super().__init__()
131
- self.encoder_hidden = n_hidden
132
- self.residual_layers = n_layers
133
- self.residual_channels = n_chans
134
- self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
135
- self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
136
- dim = self.residual_channels
137
- self.mlp = nn.Sequential(
138
- nn.Linear(dim, dim * 4),
139
- Mish(),
140
- nn.Linear(dim * 4, dim)
141
- )
142
- self.residual_layers = nn.ModuleList([
143
- ResidualBlock(self.encoder_hidden, self.residual_channels, 1)
144
- for i in range(self.residual_layers)
145
- ])
146
- self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
147
- self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
148
- nn.init.zeros_(self.output_projection.weight)
149
-
150
- def forward(self, spec, diffusion_step, cond):
151
- x = spec.squeeze(0)
152
- x = self.input_projection(x) # x [B, residual_channel, T]
153
- x = F.relu(x)
154
- # skip = torch.randn_like(x)
155
- diffusion_step = diffusion_step.float()
156
- diffusion_step = self.diffusion_embedding(diffusion_step)
157
- diffusion_step = self.mlp(diffusion_step)
158
-
159
- x, skip = self.residual_layers[0](x, cond, diffusion_step)
160
- # noinspection PyTypeChecker
161
- for layer in self.residual_layers[1:]:
162
- x, skip_connection = layer.forward(x, cond, diffusion_step)
163
- skip = skip + skip_connection
164
- x = skip / math.sqrt(len(self.residual_layers))
165
- x = self.skip_projection(x)
166
- x = F.relu(x)
167
- x = self.output_projection(x) # [B, 80, T]
168
- return x.unsqueeze(1)
169
-
170
-
171
- class AfterDiffusion(nn.Module):
172
- def __init__(self, spec_max, spec_min, v_type='a'):
173
- super().__init__()
174
- self.spec_max = spec_max
175
- self.spec_min = spec_min
176
- self.type = v_type
177
-
178
- def forward(self, x):
179
- x = x.squeeze(1).permute(0, 2, 1)
180
- mel_out = (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
181
- if self.type == 'nsf-hifigan-log10':
182
- mel_out = mel_out * 0.434294
183
- return mel_out.transpose(2, 1)
184
-
185
-
186
- class Pred(nn.Module):
187
- def __init__(self, alphas_cumprod):
188
- super().__init__()
189
- self.alphas_cumprod = alphas_cumprod
190
-
191
- def forward(self, x_1, noise_t, t_1, t_prev):
192
- a_t = extract(self.alphas_cumprod, t_1).cpu()
193
- a_prev = extract(self.alphas_cumprod, t_prev).cpu()
194
- a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu()
195
- x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
196
- a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
197
- x_pred = x_1 + x_delta.cpu()
198
-
199
- return x_pred
200
-
201
-
202
- class GaussianDiffusion(nn.Module):
203
- def __init__(self,
204
- out_dims=128,
205
- n_layers=20,
206
- n_chans=384,
207
- n_hidden=256,
208
- timesteps=1000,
209
- k_step=1000,
210
- max_beta=0.02,
211
- spec_min=-12,
212
- spec_max=2):
213
- super().__init__()
214
- self.denoise_fn = DiffNet(out_dims, n_layers, n_chans, n_hidden)
215
- self.out_dims = out_dims
216
- self.mel_bins = out_dims
217
- self.n_hidden = n_hidden
218
- betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
219
-
220
- alphas = 1. - betas
221
- alphas_cumprod = np.cumprod(alphas, axis=0)
222
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
223
- timesteps, = betas.shape
224
- self.num_timesteps = int(timesteps)
225
- self.k_step = k_step
226
-
227
- self.noise_list = deque(maxlen=4)
228
-
229
- to_torch = partial(torch.tensor, dtype=torch.float32)
230
-
231
- self.register_buffer('betas', to_torch(betas))
232
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
233
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
234
-
235
- # calculations for diffusion q(x_t | x_{t-1}) and others
236
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
237
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
238
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
239
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
240
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
241
-
242
- # calculations for posterior q(x_{t-1} | x_t, x_0)
243
- posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
244
- # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
245
- self.register_buffer('posterior_variance', to_torch(posterior_variance))
246
- # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
247
- self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
248
- self.register_buffer('posterior_mean_coef1', to_torch(
249
- betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
250
- self.register_buffer('posterior_mean_coef2', to_torch(
251
- (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
252
-
253
- self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
254
- self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
255
- self.ad = AfterDiffusion(self.spec_max, self.spec_min)
256
- self.xp = Pred(self.alphas_cumprod)
257
-
258
- def q_mean_variance(self, x_start, t):
259
- mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
260
- variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
261
- log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
262
- return mean, variance, log_variance
263
-
264
- def predict_start_from_noise(self, x_t, t, noise):
265
- return (
266
- extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
267
- extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
268
- )
269
-
270
- def q_posterior(self, x_start, x_t, t):
271
- posterior_mean = (
272
- extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
273
- extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
274
- )
275
- posterior_variance = extract(self.posterior_variance, t, x_t.shape)
276
- posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
277
- return posterior_mean, posterior_variance, posterior_log_variance_clipped
278
-
279
- def p_mean_variance(self, x, t, cond):
280
- noise_pred = self.denoise_fn(x, t, cond=cond)
281
- x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
282
-
283
- x_recon.clamp_(-1., 1.)
284
-
285
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
286
- return model_mean, posterior_variance, posterior_log_variance
287
-
288
- @torch.no_grad()
289
- def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
290
- b, *_, device = *x.shape, x.device
291
- model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
292
- noise = noise_like(x.shape, device, repeat_noise)
293
- # no noise when t == 0
294
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
295
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
296
-
297
- @torch.no_grad()
298
- def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
299
- """
300
- Use the PLMS method from
301
- [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
302
- """
303
-
304
- def get_x_pred(x, noise_t, t):
305
- a_t = extract(self.alphas_cumprod, t)
306
- a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)))
307
- a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
308
-
309
- x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
310
- a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
311
- x_pred = x + x_delta
312
-
313
- return x_pred
314
-
315
- noise_list = self.noise_list
316
- noise_pred = self.denoise_fn(x, t, cond=cond)
317
-
318
- if len(noise_list) == 0:
319
- x_pred = get_x_pred(x, noise_pred, t)
320
- noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
321
- noise_pred_prime = (noise_pred + noise_pred_prev) / 2
322
- elif len(noise_list) == 1:
323
- noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
324
- elif len(noise_list) == 2:
325
- noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
326
- else:
327
- noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
328
-
329
- x_prev = get_x_pred(x, noise_pred_prime, t)
330
- noise_list.append(noise_pred)
331
-
332
- return x_prev
333
-
334
- def q_sample(self, x_start, t, noise=None):
335
- noise = default(noise, lambda: torch.randn_like(x_start))
336
- return (
337
- extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
338
- extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
339
- )
340
-
341
- def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
342
- noise = default(noise, lambda: torch.randn_like(x_start))
343
-
344
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
345
- x_recon = self.denoise_fn(x_noisy, t, cond)
346
-
347
- if loss_type == 'l1':
348
- loss = (noise - x_recon).abs().mean()
349
- elif loss_type == 'l2':
350
- loss = F.mse_loss(noise, x_recon)
351
- else:
352
- raise NotImplementedError()
353
-
354
- return loss
355
-
356
- def org_forward(self,
357
- condition,
358
- init_noise=None,
359
- gt_spec=None,
360
- infer=True,
361
- infer_speedup=100,
362
- method='pndm',
363
- k_step=1000,
364
- use_tqdm=True):
365
- """
366
- conditioning diffusion, use fastspeech2 encoder output as the condition
367
- """
368
- cond = condition
369
- b, device = condition.shape[0], condition.device
370
- if not infer:
371
- spec = self.norm_spec(gt_spec)
372
- t = torch.randint(0, self.k_step, (b,), device=device).long()
373
- norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
374
- return self.p_losses(norm_spec, t, cond=cond)
375
- else:
376
- shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
377
-
378
- if gt_spec is None:
379
- t = self.k_step
380
- if init_noise is None:
381
- x = torch.randn(shape, device=device)
382
- else:
383
- x = init_noise
384
- else:
385
- t = k_step
386
- norm_spec = self.norm_spec(gt_spec)
387
- norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
388
- x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
389
-
390
- if method is not None and infer_speedup > 1:
391
- if method == 'dpm-solver':
392
- from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
393
- # 1. Define the noise schedule.
394
- noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
395
-
396
- # 2. Convert your discrete-time `model` to the continuous-time
397
- # noise prediction model. Here is an example for a diffusion model
398
- # `model` with the noise prediction type ("noise") .
399
- def my_wrapper(fn):
400
- def wrapped(x, t, **kwargs):
401
- ret = fn(x, t, **kwargs)
402
- if use_tqdm:
403
- self.bar.update(1)
404
- return ret
405
-
406
- return wrapped
407
-
408
- model_fn = model_wrapper(
409
- my_wrapper(self.denoise_fn),
410
- noise_schedule,
411
- model_type="noise", # or "x_start" or "v" or "score"
412
- model_kwargs={"cond": cond}
413
- )
414
-
415
- # 3. Define dpm-solver and sample by singlestep DPM-Solver.
416
- # (We recommend singlestep DPM-Solver for unconditional sampling)
417
- # You can adjust the `steps` to balance the computation
418
- # costs and the sample quality.
419
- dpm_solver = DPM_Solver(model_fn, noise_schedule)
420
-
421
- steps = t // infer_speedup
422
- if use_tqdm:
423
- self.bar = tqdm(desc="sample time step", total=steps)
424
- x = dpm_solver.sample(
425
- x,
426
- steps=steps,
427
- order=3,
428
- skip_type="time_uniform",
429
- method="singlestep",
430
- )
431
- if use_tqdm:
432
- self.bar.close()
433
- elif method == 'pndm':
434
- self.noise_list = deque(maxlen=4)
435
- if use_tqdm:
436
- for i in tqdm(
437
- reversed(range(0, t, infer_speedup)), desc='sample time step',
438
- total=t // infer_speedup,
439
- ):
440
- x = self.p_sample_plms(
441
- x, torch.full((b,), i, device=device, dtype=torch.long),
442
- infer_speedup, cond=cond
443
- )
444
- else:
445
- for i in reversed(range(0, t, infer_speedup)):
446
- x = self.p_sample_plms(
447
- x, torch.full((b,), i, device=device, dtype=torch.long),
448
- infer_speedup, cond=cond
449
- )
450
- else:
451
- raise NotImplementedError(method)
452
- else:
453
- if use_tqdm:
454
- for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
455
- x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
456
- else:
457
- for i in reversed(range(0, t)):
458
- x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
459
- x = x.squeeze(1).transpose(1, 2) # [B, T, M]
460
- return self.denorm_spec(x).transpose(2, 1)
461
-
462
- def norm_spec(self, x):
463
- return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
464
-
465
- def denorm_spec(self, x):
466
- return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
467
-
468
- def get_x_pred(self, x_1, noise_t, t_1, t_prev):
469
- a_t = extract(self.alphas_cumprod, t_1)
470
- a_prev = extract(self.alphas_cumprod, t_prev)
471
- a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
472
- x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
473
- a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
474
- x_pred = x_1 + x_delta
475
- return x_pred
476
-
477
- def OnnxExport(self, project_name=None, init_noise=None, hidden_channels=256, export_denoise=True, export_pred=True, export_after=True):
478
- cond = torch.randn([1, self.n_hidden, 10]).cpu()
479
- if init_noise is None:
480
- x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu()
481
- else:
482
- x = init_noise
483
- pndms = 100
484
-
485
- org_y_x = self.org_forward(cond, init_noise=x)
486
-
487
- device = cond.device
488
- n_frames = cond.shape[2]
489
- step_range = torch.arange(0, self.k_step, pndms, dtype=torch.long, device=device).flip(0)
490
- plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
491
- noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
492
-
493
- ot = step_range[0]
494
- ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
495
- if export_denoise:
496
- torch.onnx.export(
497
- self.denoise_fn,
498
- (x.cpu(), ot_1.cpu(), cond.cpu()),
499
- f"{project_name}_denoise.onnx",
500
- input_names=["noise", "time", "condition"],
501
- output_names=["noise_pred"],
502
- dynamic_axes={
503
- "noise": [3],
504
- "condition": [2]
505
- },
506
- opset_version=16
507
- )
508
-
509
- for t in step_range:
510
- t_1 = torch.full((1,), t, device=device, dtype=torch.long)
511
- noise_pred = self.denoise_fn(x, t_1, cond)
512
- t_prev = t_1 - pndms
513
- t_prev = t_prev * (t_prev > 0)
514
- if plms_noise_stage == 0:
515
- if export_pred:
516
- torch.onnx.export(
517
- self.xp,
518
- (x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()),
519
- f"{project_name}_pred.onnx",
520
- input_names=["noise", "noise_pred", "time", "time_prev"],
521
- output_names=["noise_pred_o"],
522
- dynamic_axes={
523
- "noise": [3],
524
- "noise_pred": [3]
525
- },
526
- opset_version=16
527
- )
528
-
529
- x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
530
- noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
531
- noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
532
-
533
- elif plms_noise_stage == 1:
534
- noise_pred_prime = predict_stage1(noise_pred, noise_list)
535
-
536
- elif plms_noise_stage == 2:
537
- noise_pred_prime = predict_stage2(noise_pred, noise_list)
538
-
539
- else:
540
- noise_pred_prime = predict_stage3(noise_pred, noise_list)
541
-
542
- noise_pred = noise_pred.unsqueeze(0)
543
-
544
- if plms_noise_stage < 3:
545
- noise_list = torch.cat((noise_list, noise_pred), dim=0)
546
- plms_noise_stage = plms_noise_stage + 1
547
-
548
- else:
549
- noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
550
-
551
- x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
552
- if export_after:
553
- torch.onnx.export(
554
- self.ad,
555
- x.cpu(),
556
- f"{project_name}_after.onnx",
557
- input_names=["x"],
558
- output_names=["mel_out"],
559
- dynamic_axes={
560
- "x": [3]
561
- },
562
- opset_version=16
563
- )
564
- x = self.ad(x)
565
-
566
- print((x == org_y_x).all())
567
- return x
568
-
569
- def forward(self, condition=None, init_noise=None, pndms=None, k_step=None):
570
- cond = condition
571
- x = init_noise
572
-
573
- device = cond.device
574
- n_frames = cond.shape[2]
575
- step_range = torch.arange(0, k_step.item(), pndms.item(), dtype=torch.long, device=device).flip(0)
576
- plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
577
- noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
578
-
579
- ot = step_range[0]
580
- ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
581
-
582
- for t in step_range:
583
- t_1 = torch.full((1,), t, device=device, dtype=torch.long)
584
- noise_pred = self.denoise_fn(x, t_1, cond)
585
- t_prev = t_1 - pndms
586
- t_prev = t_prev * (t_prev > 0)
587
- if plms_noise_stage == 0:
588
- x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
589
- noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
590
- noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
591
-
592
- elif plms_noise_stage == 1:
593
- noise_pred_prime = predict_stage1(noise_pred, noise_list)
594
-
595
- elif plms_noise_stage == 2:
596
- noise_pred_prime = predict_stage2(noise_pred, noise_list)
597
-
598
- else:
599
- noise_pred_prime = predict_stage3(noise_pred, noise_list)
600
-
601
- noise_pred = noise_pred.unsqueeze(0)
602
-
603
- if plms_noise_stage < 3:
604
- noise_list = torch.cat((noise_list, noise_pred), dim=0)
605
- plms_noise_stage = plms_noise_stage + 1
606
-
607
- else:
608
- noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
609
-
610
- x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
611
- x = self.ad(x)
612
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diffusion/dpm_solver_pytorch.py DELETED
@@ -1,1201 +0,0 @@
1
- import math
2
-
3
- import torch
4
-
5
-
6
- class NoiseScheduleVP:
7
- def __init__(
8
- self,
9
- schedule='discrete',
10
- betas=None,
11
- alphas_cumprod=None,
12
- continuous_beta_0=0.1,
13
- continuous_beta_1=20.,
14
- ):
15
- """Create a wrapper class for the forward SDE (VP type).
16
-
17
- ***
18
- Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
19
- We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
20
- ***
21
-
22
- The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
23
- We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
24
- Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
25
-
26
- log_alpha_t = self.marginal_log_mean_coeff(t)
27
- sigma_t = self.marginal_std(t)
28
- lambda_t = self.marginal_lambda(t)
29
-
30
- Moreover, as lambda(t) is an invertible function, we also support its inverse function:
31
-
32
- t = self.inverse_lambda(lambda_t)
33
-
34
- ===============================================================
35
-
36
- We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
37
-
38
- 1. For discrete-time DPMs:
39
-
40
- For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
41
- t_i = (i + 1) / N
42
- e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
43
- We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
44
-
45
- Args:
46
- betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
47
- alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
48
-
49
- Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
50
-
51
- **Important**: Please pay special attention for the args for `alphas_cumprod`:
52
- The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
53
- q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
54
- Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
55
- alpha_{t_n} = \sqrt{\hat{alpha_n}},
56
- and
57
- log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
58
-
59
-
60
- 2. For continuous-time DPMs:
61
-
62
- We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
63
- schedule are the default settings in DDPM and improved-DDPM:
64
-
65
- Args:
66
- beta_min: A `float` number. The smallest beta for the linear schedule.
67
- beta_max: A `float` number. The largest beta for the linear schedule.
68
- cosine_s: A `float` number. The hyperparameter in the cosine schedule.
69
- cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
70
- T: A `float` number. The ending time of the forward process.
71
-
72
- ===============================================================
73
-
74
- Args:
75
- schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
76
- 'linear' or 'cosine' for continuous-time DPMs.
77
- Returns:
78
- A wrapper object of the forward SDE (VP type).
79
-
80
- ===============================================================
81
-
82
- Example:
83
-
84
- # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
85
- >>> ns = NoiseScheduleVP('discrete', betas=betas)
86
-
87
- # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
88
- >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
89
-
90
- # For continuous-time DPMs (VPSDE), linear schedule:
91
- >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
92
-
93
- """
94
-
95
- if schedule not in ['discrete', 'linear', 'cosine']:
96
- raise ValueError(
97
- "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
98
- schedule))
99
-
100
- self.schedule = schedule
101
- if schedule == 'discrete':
102
- if betas is not None:
103
- log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
104
- else:
105
- assert alphas_cumprod is not None
106
- log_alphas = 0.5 * torch.log(alphas_cumprod)
107
- self.total_N = len(log_alphas)
108
- self.T = 1.
109
- self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
110
- self.log_alpha_array = log_alphas.reshape((1, -1,))
111
- else:
112
- self.total_N = 1000
113
- self.beta_0 = continuous_beta_0
114
- self.beta_1 = continuous_beta_1
115
- self.cosine_s = 0.008
116
- self.cosine_beta_max = 999.
117
- self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
118
- 1. + self.cosine_s) / math.pi - self.cosine_s
119
- self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
120
- self.schedule = schedule
121
- if schedule == 'cosine':
122
- # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
123
- # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
124
- self.T = 0.9946
125
- else:
126
- self.T = 1.
127
-
128
- def marginal_log_mean_coeff(self, t):
129
- """
130
- Compute log(alpha_t) of a given continuous-time label t in [0, T].
131
- """
132
- if self.schedule == 'discrete':
133
- return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
134
- self.log_alpha_array.to(t.device)).reshape((-1))
135
- elif self.schedule == 'linear':
136
- return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
137
- elif self.schedule == 'cosine':
138
- log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
139
- log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
140
- return log_alpha_t
141
-
142
- def marginal_alpha(self, t):
143
- """
144
- Compute alpha_t of a given continuous-time label t in [0, T].
145
- """
146
- return torch.exp(self.marginal_log_mean_coeff(t))
147
-
148
- def marginal_std(self, t):
149
- """
150
- Compute sigma_t of a given continuous-time label t in [0, T].
151
- """
152
- return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
153
-
154
- def marginal_lambda(self, t):
155
- """
156
- Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
157
- """
158
- log_mean_coeff = self.marginal_log_mean_coeff(t)
159
- log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
160
- return log_mean_coeff - log_std
161
-
162
- def inverse_lambda(self, lamb):
163
- """
164
- Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
165
- """
166
- if self.schedule == 'linear':
167
- tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
168
- Delta = self.beta_0 ** 2 + tmp
169
- return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
170
- elif self.schedule == 'discrete':
171
- log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
172
- t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
173
- torch.flip(self.t_array.to(lamb.device), [1]))
174
- return t.reshape((-1,))
175
- else:
176
- log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
177
- t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
178
- 1. + self.cosine_s) / math.pi - self.cosine_s
179
- t = t_fn(log_alpha)
180
- return t
181
-
182
-
183
- def model_wrapper(
184
- model,
185
- noise_schedule,
186
- model_type="noise",
187
- model_kwargs={},
188
- guidance_type="uncond",
189
- condition=None,
190
- unconditional_condition=None,
191
- guidance_scale=1.,
192
- classifier_fn=None,
193
- classifier_kwargs={},
194
- ):
195
- """Create a wrapper function for the noise prediction model.
196
-
197
- DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
198
- firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
199
-
200
- We support four types of the diffusion model by setting `model_type`:
201
-
202
- 1. "noise": noise prediction model. (Trained by predicting noise).
203
-
204
- 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
205
-
206
- 3. "v": velocity prediction model. (Trained by predicting the velocity).
207
- The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
208
-
209
- [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
210
- arXiv preprint arXiv:2202.00512 (2022).
211
- [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
212
- arXiv preprint arXiv:2210.02303 (2022).
213
-
214
- 4. "score": marginal score function. (Trained by denoising score matching).
215
- Note that the score function and the noise prediction model follows a simple relationship:
216
- ```
217
- noise(x_t, t) = -sigma_t * score(x_t, t)
218
- ```
219
-
220
- We support three types of guided sampling by DPMs by setting `guidance_type`:
221
- 1. "uncond": unconditional sampling by DPMs.
222
- The input `model` has the following format:
223
- ``
224
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
225
- ``
226
-
227
- 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
228
- The input `model` has the following format:
229
- ``
230
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
231
- ``
232
-
233
- The input `classifier_fn` has the following format:
234
- ``
235
- classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
236
- ``
237
-
238
- [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
239
- in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
240
-
241
- 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
242
- The input `model` has the following format:
243
- ``
244
- model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
245
- ``
246
- And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
247
-
248
- [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
249
- arXiv preprint arXiv:2207.12598 (2022).
250
-
251
-
252
- The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
253
- or continuous-time labels (i.e. epsilon to T).
254
-
255
- We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
256
- ``
257
- def model_fn(x, t_continuous) -> noise:
258
- t_input = get_model_input_time(t_continuous)
259
- return noise_pred(model, x, t_input, **model_kwargs)
260
- ``
261
- where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
262
-
263
- ===============================================================
264
-
265
- Args:
266
- model: A diffusion model with the corresponding format described above.
267
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
268
- model_type: A `str`. The parameterization type of the diffusion model.
269
- "noise" or "x_start" or "v" or "score".
270
- model_kwargs: A `dict`. A dict for the other inputs of the model function.
271
- guidance_type: A `str`. The type of the guidance for sampling.
272
- "uncond" or "classifier" or "classifier-free".
273
- condition: A pytorch tensor. The condition for the guided sampling.
274
- Only used for "classifier" or "classifier-free" guidance type.
275
- unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
276
- Only used for "classifier-free" guidance type.
277
- guidance_scale: A `float`. The scale for the guided sampling.
278
- classifier_fn: A classifier function. Only used for the classifier guidance.
279
- classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
280
- Returns:
281
- A noise prediction model that accepts the noised data and the continuous time as the inputs.
282
- """
283
-
284
- def get_model_input_time(t_continuous):
285
- """
286
- Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
287
- For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
288
- For continuous-time DPMs, we just use `t_continuous`.
289
- """
290
- if noise_schedule.schedule == 'discrete':
291
- return (t_continuous - 1. / noise_schedule.total_N) * noise_schedule.total_N
292
- else:
293
- return t_continuous
294
-
295
- def noise_pred_fn(x, t_continuous, cond=None):
296
- if t_continuous.reshape((-1,)).shape[0] == 1:
297
- t_continuous = t_continuous.expand((x.shape[0]))
298
- t_input = get_model_input_time(t_continuous)
299
- if cond is None:
300
- output = model(x, t_input, **model_kwargs)
301
- else:
302
- output = model(x, t_input, cond, **model_kwargs)
303
- if model_type == "noise":
304
- return output
305
- elif model_type == "x_start":
306
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
307
- dims = x.dim()
308
- return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
309
- elif model_type == "v":
310
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
311
- dims = x.dim()
312
- return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
313
- elif model_type == "score":
314
- sigma_t = noise_schedule.marginal_std(t_continuous)
315
- dims = x.dim()
316
- return -expand_dims(sigma_t, dims) * output
317
-
318
- def cond_grad_fn(x, t_input):
319
- """
320
- Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
321
- """
322
- with torch.enable_grad():
323
- x_in = x.detach().requires_grad_(True)
324
- log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
325
- return torch.autograd.grad(log_prob.sum(), x_in)[0]
326
-
327
- def model_fn(x, t_continuous):
328
- """
329
- The noise predicition model function that is used for DPM-Solver.
330
- """
331
- if t_continuous.reshape((-1,)).shape[0] == 1:
332
- t_continuous = t_continuous.expand((x.shape[0]))
333
- if guidance_type == "uncond":
334
- return noise_pred_fn(x, t_continuous)
335
- elif guidance_type == "classifier":
336
- assert classifier_fn is not None
337
- t_input = get_model_input_time(t_continuous)
338
- cond_grad = cond_grad_fn(x, t_input)
339
- sigma_t = noise_schedule.marginal_std(t_continuous)
340
- noise = noise_pred_fn(x, t_continuous)
341
- return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
342
- elif guidance_type == "classifier-free":
343
- if guidance_scale == 1. or unconditional_condition is None:
344
- return noise_pred_fn(x, t_continuous, cond=condition)
345
- else:
346
- x_in = torch.cat([x] * 2)
347
- t_in = torch.cat([t_continuous] * 2)
348
- c_in = torch.cat([unconditional_condition, condition])
349
- noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
350
- return noise_uncond + guidance_scale * (noise - noise_uncond)
351
-
352
- assert model_type in ["noise", "x_start", "v"]
353
- assert guidance_type in ["uncond", "classifier", "classifier-free"]
354
- return model_fn
355
-
356
-
357
- class DPM_Solver:
358
- def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
359
- """Construct a DPM-Solver.
360
-
361
- We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
362
- If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
363
- If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
364
- In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
365
- The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
366
-
367
- Args:
368
- model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
369
- ``
370
- def model_fn(x, t_continuous):
371
- return noise
372
- ``
373
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
374
- predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
375
- thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
376
- max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
377
-
378
- [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
379
- """
380
- self.model = model_fn
381
- self.noise_schedule = noise_schedule
382
- self.predict_x0 = predict_x0
383
- self.thresholding = thresholding
384
- self.max_val = max_val
385
-
386
- def noise_prediction_fn(self, x, t):
387
- """
388
- Return the noise prediction model.
389
- """
390
- return self.model(x, t)
391
-
392
- def data_prediction_fn(self, x, t):
393
- """
394
- Return the data prediction model (with thresholding).
395
- """
396
- noise = self.noise_prediction_fn(x, t)
397
- dims = x.dim()
398
- alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
399
- x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
400
- if self.thresholding:
401
- p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
402
- s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
403
- s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
404
- x0 = torch.clamp(x0, -s, s) / s
405
- return x0
406
-
407
- def model_fn(self, x, t):
408
- """
409
- Convert the model to the noise prediction model or the data prediction model.
410
- """
411
- if self.predict_x0:
412
- return self.data_prediction_fn(x, t)
413
- else:
414
- return self.noise_prediction_fn(x, t)
415
-
416
- def get_time_steps(self, skip_type, t_T, t_0, N, device):
417
- """Compute the intermediate time steps for sampling.
418
-
419
- Args:
420
- skip_type: A `str`. The type for the spacing of the time steps. We support three types:
421
- - 'logSNR': uniform logSNR for the time steps.
422
- - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
423
- - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
424
- t_T: A `float`. The starting time of the sampling (default is T).
425
- t_0: A `float`. The ending time of the sampling (default is epsilon).
426
- N: A `int`. The total number of the spacing of the time steps.
427
- device: A torch device.
428
- Returns:
429
- A pytorch tensor of the time steps, with the shape (N + 1,).
430
- """
431
- if skip_type == 'logSNR':
432
- lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
433
- lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
434
- logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
435
- return self.noise_schedule.inverse_lambda(logSNR_steps)
436
- elif skip_type == 'time_uniform':
437
- return torch.linspace(t_T, t_0, N + 1).to(device)
438
- elif skip_type == 'time_quadratic':
439
- t_order = 2
440
- t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
441
- return t
442
- else:
443
- raise ValueError(
444
- "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
445
-
446
- def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
447
- """
448
- Get the order of each step for sampling by the singlestep DPM-Solver.
449
-
450
- We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
451
- Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
452
- - If order == 1:
453
- We take `steps` of DPM-Solver-1 (i.e. DDIM).
454
- - If order == 2:
455
- - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
456
- - If steps % 2 == 0, we use K steps of DPM-Solver-2.
457
- - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
458
- - If order == 3:
459
- - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
460
- - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
461
- - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
462
- - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
463
-
464
- ============================================
465
- Args:
466
- order: A `int`. The max order for the solver (2 or 3).
467
- steps: A `int`. The total number of function evaluations (NFE).
468
- skip_type: A `str`. The type for the spacing of the time steps. We support three types:
469
- - 'logSNR': uniform logSNR for the time steps.
470
- - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
471
- - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
472
- t_T: A `float`. The starting time of the sampling (default is T).
473
- t_0: A `float`. The ending time of the sampling (default is epsilon).
474
- device: A torch device.
475
- Returns:
476
- orders: A list of the solver order of each step.
477
- """
478
- if order == 3:
479
- K = steps // 3 + 1
480
- if steps % 3 == 0:
481
- orders = [3, ] * (K - 2) + [2, 1]
482
- elif steps % 3 == 1:
483
- orders = [3, ] * (K - 1) + [1]
484
- else:
485
- orders = [3, ] * (K - 1) + [2]
486
- elif order == 2:
487
- if steps % 2 == 0:
488
- K = steps // 2
489
- orders = [2, ] * K
490
- else:
491
- K = steps // 2 + 1
492
- orders = [2, ] * (K - 1) + [1]
493
- elif order == 1:
494
- K = 1
495
- orders = [1, ] * steps
496
- else:
497
- raise ValueError("'order' must be '1' or '2' or '3'.")
498
- if skip_type == 'logSNR':
499
- # To reproduce the results in DPM-Solver paper
500
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
501
- else:
502
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
503
- torch.cumsum(torch.tensor([0, ] + orders), dim=0).to(device)]
504
- return timesteps_outer, orders
505
-
506
- def denoise_fn(self, x, s):
507
- """
508
- Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
509
- """
510
- return self.data_prediction_fn(x, s)
511
-
512
- def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
513
- """
514
- DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
515
-
516
- Args:
517
- x: A pytorch tensor. The initial value at time `s`.
518
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
519
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
520
- model_s: A pytorch tensor. The model function evaluated at time `s`.
521
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
522
- return_intermediate: A `bool`. If true, also return the model value at time `s`.
523
- Returns:
524
- x_t: A pytorch tensor. The approximated solution at time `t`.
525
- """
526
- ns = self.noise_schedule
527
- dims = x.dim()
528
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
529
- h = lambda_t - lambda_s
530
- log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
531
- sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
532
- alpha_t = torch.exp(log_alpha_t)
533
-
534
- if self.predict_x0:
535
- phi_1 = torch.expm1(-h)
536
- if model_s is None:
537
- model_s = self.model_fn(x, s)
538
- x_t = (
539
- expand_dims(sigma_t / sigma_s, dims) * x
540
- - expand_dims(alpha_t * phi_1, dims) * model_s
541
- )
542
- if return_intermediate:
543
- return x_t, {'model_s': model_s}
544
- else:
545
- return x_t
546
- else:
547
- phi_1 = torch.expm1(h)
548
- if model_s is None:
549
- model_s = self.model_fn(x, s)
550
- x_t = (
551
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
552
- - expand_dims(sigma_t * phi_1, dims) * model_s
553
- )
554
- if return_intermediate:
555
- return x_t, {'model_s': model_s}
556
- else:
557
- return x_t
558
-
559
- def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
560
- solver_type='dpm_solver'):
561
- """
562
- Singlestep solver DPM-Solver-2 from time `s` to time `t`.
563
-
564
- Args:
565
- x: A pytorch tensor. The initial value at time `s`.
566
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
567
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
568
- r1: A `float`. The hyperparameter of the second-order solver.
569
- model_s: A pytorch tensor. The model function evaluated at time `s`.
570
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
571
- return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
572
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
573
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
574
- Returns:
575
- x_t: A pytorch tensor. The approximated solution at time `t`.
576
- """
577
- if solver_type not in ['dpm_solver', 'taylor']:
578
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
579
- if r1 is None:
580
- r1 = 0.5
581
- ns = self.noise_schedule
582
- dims = x.dim()
583
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
584
- h = lambda_t - lambda_s
585
- lambda_s1 = lambda_s + r1 * h
586
- s1 = ns.inverse_lambda(lambda_s1)
587
- log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
588
- s1), ns.marginal_log_mean_coeff(t)
589
- sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
590
- alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
591
-
592
- if self.predict_x0:
593
- phi_11 = torch.expm1(-r1 * h)
594
- phi_1 = torch.expm1(-h)
595
-
596
- if model_s is None:
597
- model_s = self.model_fn(x, s)
598
- x_s1 = (
599
- expand_dims(sigma_s1 / sigma_s, dims) * x
600
- - expand_dims(alpha_s1 * phi_11, dims) * model_s
601
- )
602
- model_s1 = self.model_fn(x_s1, s1)
603
- if solver_type == 'dpm_solver':
604
- x_t = (
605
- expand_dims(sigma_t / sigma_s, dims) * x
606
- - expand_dims(alpha_t * phi_1, dims) * model_s
607
- - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
608
- )
609
- elif solver_type == 'taylor':
610
- x_t = (
611
- expand_dims(sigma_t / sigma_s, dims) * x
612
- - expand_dims(alpha_t * phi_1, dims) * model_s
613
- + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
614
- model_s1 - model_s)
615
- )
616
- else:
617
- phi_11 = torch.expm1(r1 * h)
618
- phi_1 = torch.expm1(h)
619
-
620
- if model_s is None:
621
- model_s = self.model_fn(x, s)
622
- x_s1 = (
623
- expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
624
- - expand_dims(sigma_s1 * phi_11, dims) * model_s
625
- )
626
- model_s1 = self.model_fn(x_s1, s1)
627
- if solver_type == 'dpm_solver':
628
- x_t = (
629
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
630
- - expand_dims(sigma_t * phi_1, dims) * model_s
631
- - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
632
- )
633
- elif solver_type == 'taylor':
634
- x_t = (
635
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
636
- - expand_dims(sigma_t * phi_1, dims) * model_s
637
- - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
638
- )
639
- if return_intermediate:
640
- return x_t, {'model_s': model_s, 'model_s1': model_s1}
641
- else:
642
- return x_t
643
-
644
- def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
645
- return_intermediate=False, solver_type='dpm_solver'):
646
- """
647
- Singlestep solver DPM-Solver-3 from time `s` to time `t`.
648
-
649
- Args:
650
- x: A pytorch tensor. The initial value at time `s`.
651
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
652
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
653
- r1: A `float`. The hyperparameter of the third-order solver.
654
- r2: A `float`. The hyperparameter of the third-order solver.
655
- model_s: A pytorch tensor. The model function evaluated at time `s`.
656
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
657
- model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
658
- If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
659
- return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
660
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
661
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
662
- Returns:
663
- x_t: A pytorch tensor. The approximated solution at time `t`.
664
- """
665
- if solver_type not in ['dpm_solver', 'taylor']:
666
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
667
- if r1 is None:
668
- r1 = 1. / 3.
669
- if r2 is None:
670
- r2 = 2. / 3.
671
- ns = self.noise_schedule
672
- dims = x.dim()
673
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
674
- h = lambda_t - lambda_s
675
- lambda_s1 = lambda_s + r1 * h
676
- lambda_s2 = lambda_s + r2 * h
677
- s1 = ns.inverse_lambda(lambda_s1)
678
- s2 = ns.inverse_lambda(lambda_s2)
679
- log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
680
- s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
681
- sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
682
- s2), ns.marginal_std(t)
683
- alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
684
-
685
- if self.predict_x0:
686
- phi_11 = torch.expm1(-r1 * h)
687
- phi_12 = torch.expm1(-r2 * h)
688
- phi_1 = torch.expm1(-h)
689
- phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
690
- phi_2 = phi_1 / h + 1.
691
- phi_3 = phi_2 / h - 0.5
692
-
693
- if model_s is None:
694
- model_s = self.model_fn(x, s)
695
- if model_s1 is None:
696
- x_s1 = (
697
- expand_dims(sigma_s1 / sigma_s, dims) * x
698
- - expand_dims(alpha_s1 * phi_11, dims) * model_s
699
- )
700
- model_s1 = self.model_fn(x_s1, s1)
701
- x_s2 = (
702
- expand_dims(sigma_s2 / sigma_s, dims) * x
703
- - expand_dims(alpha_s2 * phi_12, dims) * model_s
704
- + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
705
- )
706
- model_s2 = self.model_fn(x_s2, s2)
707
- if solver_type == 'dpm_solver':
708
- x_t = (
709
- expand_dims(sigma_t / sigma_s, dims) * x
710
- - expand_dims(alpha_t * phi_1, dims) * model_s
711
- + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
712
- )
713
- elif solver_type == 'taylor':
714
- D1_0 = (1. / r1) * (model_s1 - model_s)
715
- D1_1 = (1. / r2) * (model_s2 - model_s)
716
- D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
717
- D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
718
- x_t = (
719
- expand_dims(sigma_t / sigma_s, dims) * x
720
- - expand_dims(alpha_t * phi_1, dims) * model_s
721
- + expand_dims(alpha_t * phi_2, dims) * D1
722
- - expand_dims(alpha_t * phi_3, dims) * D2
723
- )
724
- else:
725
- phi_11 = torch.expm1(r1 * h)
726
- phi_12 = torch.expm1(r2 * h)
727
- phi_1 = torch.expm1(h)
728
- phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
729
- phi_2 = phi_1 / h - 1.
730
- phi_3 = phi_2 / h - 0.5
731
-
732
- if model_s is None:
733
- model_s = self.model_fn(x, s)
734
- if model_s1 is None:
735
- x_s1 = (
736
- expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
737
- - expand_dims(sigma_s1 * phi_11, dims) * model_s
738
- )
739
- model_s1 = self.model_fn(x_s1, s1)
740
- x_s2 = (
741
- expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
742
- - expand_dims(sigma_s2 * phi_12, dims) * model_s
743
- - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
744
- )
745
- model_s2 = self.model_fn(x_s2, s2)
746
- if solver_type == 'dpm_solver':
747
- x_t = (
748
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
749
- - expand_dims(sigma_t * phi_1, dims) * model_s
750
- - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
751
- )
752
- elif solver_type == 'taylor':
753
- D1_0 = (1. / r1) * (model_s1 - model_s)
754
- D1_1 = (1. / r2) * (model_s2 - model_s)
755
- D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
756
- D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
757
- x_t = (
758
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
759
- - expand_dims(sigma_t * phi_1, dims) * model_s
760
- - expand_dims(sigma_t * phi_2, dims) * D1
761
- - expand_dims(sigma_t * phi_3, dims) * D2
762
- )
763
-
764
- if return_intermediate:
765
- return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
766
- else:
767
- return x_t
768
-
769
- def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
770
- """
771
- Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
772
-
773
- Args:
774
- x: A pytorch tensor. The initial value at time `s`.
775
- model_prev_list: A list of pytorch tensor. The previous computed model values.
776
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
777
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
778
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
779
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
780
- Returns:
781
- x_t: A pytorch tensor. The approximated solution at time `t`.
782
- """
783
- if solver_type not in ['dpm_solver', 'taylor']:
784
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
785
- ns = self.noise_schedule
786
- dims = x.dim()
787
- model_prev_1, model_prev_0 = model_prev_list
788
- t_prev_1, t_prev_0 = t_prev_list
789
- lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
790
- t_prev_0), ns.marginal_lambda(t)
791
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
792
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
793
- alpha_t = torch.exp(log_alpha_t)
794
-
795
- h_0 = lambda_prev_0 - lambda_prev_1
796
- h = lambda_t - lambda_prev_0
797
- r0 = h_0 / h
798
- D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
799
- if self.predict_x0:
800
- if solver_type == 'dpm_solver':
801
- x_t = (
802
- expand_dims(sigma_t / sigma_prev_0, dims) * x
803
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
804
- - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
805
- )
806
- elif solver_type == 'taylor':
807
- x_t = (
808
- expand_dims(sigma_t / sigma_prev_0, dims) * x
809
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
810
- + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
811
- )
812
- else:
813
- if solver_type == 'dpm_solver':
814
- x_t = (
815
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
816
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
817
- - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
818
- )
819
- elif solver_type == 'taylor':
820
- x_t = (
821
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
822
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
823
- - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
824
- )
825
- return x_t
826
-
827
- def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
828
- """
829
- Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
830
-
831
- Args:
832
- x: A pytorch tensor. The initial value at time `s`.
833
- model_prev_list: A list of pytorch tensor. The previous computed model values.
834
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
835
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
836
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
837
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
838
- Returns:
839
- x_t: A pytorch tensor. The approximated solution at time `t`.
840
- """
841
- ns = self.noise_schedule
842
- dims = x.dim()
843
- model_prev_2, model_prev_1, model_prev_0 = model_prev_list
844
- t_prev_2, t_prev_1, t_prev_0 = t_prev_list
845
- lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
846
- t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
847
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
848
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
849
- alpha_t = torch.exp(log_alpha_t)
850
-
851
- h_1 = lambda_prev_1 - lambda_prev_2
852
- h_0 = lambda_prev_0 - lambda_prev_1
853
- h = lambda_t - lambda_prev_0
854
- r0, r1 = h_0 / h, h_1 / h
855
- D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
856
- D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
857
- D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
858
- D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
859
- if self.predict_x0:
860
- x_t = (
861
- expand_dims(sigma_t / sigma_prev_0, dims) * x
862
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
863
- + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
864
- - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
865
- )
866
- else:
867
- x_t = (
868
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
869
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
870
- - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
871
- - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
872
- )
873
- return x_t
874
-
875
- def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
876
- r2=None):
877
- """
878
- Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
879
-
880
- Args:
881
- x: A pytorch tensor. The initial value at time `s`.
882
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
883
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
884
- order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
885
- return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
886
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
887
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
888
- r1: A `float`. The hyperparameter of the second-order or third-order solver.
889
- r2: A `float`. The hyperparameter of the third-order solver.
890
- Returns:
891
- x_t: A pytorch tensor. The approximated solution at time `t`.
892
- """
893
- if order == 1:
894
- return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
895
- elif order == 2:
896
- return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
897
- solver_type=solver_type, r1=r1)
898
- elif order == 3:
899
- return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
900
- solver_type=solver_type, r1=r1, r2=r2)
901
- else:
902
- raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
903
-
904
- def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
905
- """
906
- Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
907
-
908
- Args:
909
- x: A pytorch tensor. The initial value at time `s`.
910
- model_prev_list: A list of pytorch tensor. The previous computed model values.
911
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
912
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
913
- order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
914
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
915
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
916
- Returns:
917
- x_t: A pytorch tensor. The approximated solution at time `t`.
918
- """
919
- if order == 1:
920
- return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
921
- elif order == 2:
922
- return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
923
- elif order == 3:
924
- return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
925
- else:
926
- raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
927
-
928
- def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
929
- solver_type='dpm_solver'):
930
- """
931
- The adaptive step size solver based on singlestep DPM-Solver.
932
-
933
- Args:
934
- x: A pytorch tensor. The initial value at time `t_T`.
935
- order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
936
- t_T: A `float`. The starting time of the sampling (default is T).
937
- t_0: A `float`. The ending time of the sampling (default is epsilon).
938
- h_init: A `float`. The initial step size (for logSNR).
939
- atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
940
- rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
941
- theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
942
- t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
943
- current time and `t_0` is less than `t_err`. The default setting is 1e-5.
944
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
945
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
946
- Returns:
947
- x_0: A pytorch tensor. The approximated solution at time `t_0`.
948
-
949
- [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
950
- """
951
- ns = self.noise_schedule
952
- s = t_T * torch.ones((x.shape[0],)).to(x)
953
- lambda_s = ns.marginal_lambda(s)
954
- lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
955
- h = h_init * torch.ones_like(s).to(x)
956
- x_prev = x
957
- nfe = 0
958
- if order == 2:
959
- r1 = 0.5
960
- lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
961
- higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
962
- solver_type=solver_type,
963
- **kwargs)
964
- elif order == 3:
965
- r1, r2 = 1. / 3., 2. / 3.
966
- lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
967
- return_intermediate=True,
968
- solver_type=solver_type)
969
- higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
970
- solver_type=solver_type,
971
- **kwargs)
972
- else:
973
- raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
974
- while torch.abs((s - t_0)).mean() > t_err:
975
- t = ns.inverse_lambda(lambda_s + h)
976
- x_lower, lower_noise_kwargs = lower_update(x, s, t)
977
- x_higher = higher_update(x, s, t, **lower_noise_kwargs)
978
- delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
979
- norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
980
- E = norm_fn((x_higher - x_lower) / delta).max()
981
- if torch.all(E <= 1.):
982
- x = x_higher
983
- s = t
984
- x_prev = x_lower
985
- lambda_s = ns.marginal_lambda(s)
986
- h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
987
- nfe += order
988
- print('adaptive solver nfe', nfe)
989
- return x
990
-
991
- def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
992
- method='singlestep', denoise=False, solver_type='dpm_solver', atol=0.0078,
993
- rtol=0.05,
994
- ):
995
- """
996
- Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
997
-
998
- =====================================================
999
-
1000
- We support the following algorithms for both noise prediction model and data prediction model:
1001
- - 'singlestep':
1002
- Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
1003
- We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
1004
- The total number of function evaluations (NFE) == `steps`.
1005
- Given a fixed NFE == `steps`, the sampling procedure is:
1006
- - If `order` == 1:
1007
- - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
1008
- - If `order` == 2:
1009
- - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
1010
- - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
1011
- - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
1012
- - If `order` == 3:
1013
- - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
1014
- - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
1015
- - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
1016
- - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
1017
- - 'multistep':
1018
- Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
1019
- We initialize the first `order` values by lower order multistep solvers.
1020
- Given a fixed NFE == `steps`, the sampling procedure is:
1021
- Denote K = steps.
1022
- - If `order` == 1:
1023
- - We use K steps of DPM-Solver-1 (i.e. DDIM).
1024
- - If `order` == 2:
1025
- - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
1026
- - If `order` == 3:
1027
- - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
1028
- - 'singlestep_fixed':
1029
- Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
1030
- We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
1031
- - 'adaptive':
1032
- Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
1033
- We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
1034
- You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
1035
- (NFE) and the sample quality.
1036
- - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
1037
- - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
1038
-
1039
- =====================================================
1040
-
1041
- Some advices for choosing the algorithm:
1042
- - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
1043
- Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
1044
- e.g.
1045
- >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
1046
- >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
1047
- skip_type='time_uniform', method='singlestep')
1048
- - For **guided sampling with large guidance scale** by DPMs:
1049
- Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
1050
- e.g.
1051
- >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
1052
- >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
1053
- skip_type='time_uniform', method='multistep')
1054
-
1055
- We support three types of `skip_type`:
1056
- - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
1057
- - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
1058
- - 'time_quadratic': quadratic time for the time steps.
1059
-
1060
- =====================================================
1061
- Args:
1062
- x: A pytorch tensor. The initial value at time `t_start`
1063
- e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
1064
- steps: A `int`. The total number of function evaluations (NFE).
1065
- t_start: A `float`. The starting time of the sampling.
1066
- If `T` is None, we use self.noise_schedule.T (default is 1.0).
1067
- t_end: A `float`. The ending time of the sampling.
1068
- If `t_end` is None, we use 1. / self.noise_schedule.total_N.
1069
- e.g. if total_N == 1000, we have `t_end` == 1e-3.
1070
- For discrete-time DPMs:
1071
- - We recommend `t_end` == 1. / self.noise_schedule.total_N.
1072
- For continuous-time DPMs:
1073
- - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
1074
- order: A `int`. The order of DPM-Solver.
1075
- skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
1076
- method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
1077
- denoise: A `bool`. Whether to denoise at the final step. Default is False.
1078
- If `denoise` is True, the total NFE is (`steps` + 1).
1079
- solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
1080
- atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1081
- rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1082
- Returns:
1083
- x_end: A pytorch tensor. The approximated solution at time `t_end`.
1084
-
1085
- """
1086
- t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
1087
- t_T = self.noise_schedule.T if t_start is None else t_start
1088
- device = x.device
1089
- if method == 'adaptive':
1090
- with torch.no_grad():
1091
- x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
1092
- solver_type=solver_type)
1093
- elif method == 'multistep':
1094
- assert steps >= order
1095
- timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
1096
- assert timesteps.shape[0] - 1 == steps
1097
- with torch.no_grad():
1098
- vec_t = timesteps[0].expand((x.shape[0]))
1099
- model_prev_list = [self.model_fn(x, vec_t)]
1100
- t_prev_list = [vec_t]
1101
- # Init the first `order` values by lower order multistep DPM-Solver.
1102
- for init_order in range(1, order):
1103
- vec_t = timesteps[init_order].expand(x.shape[0])
1104
- x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
1105
- solver_type=solver_type)
1106
- model_prev_list.append(self.model_fn(x, vec_t))
1107
- t_prev_list.append(vec_t)
1108
- # Compute the remaining values by `order`-th order multistep DPM-Solver.
1109
- for step in range(order, steps + 1):
1110
- vec_t = timesteps[step].expand(x.shape[0])
1111
- x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, order,
1112
- solver_type=solver_type)
1113
- for i in range(order - 1):
1114
- t_prev_list[i] = t_prev_list[i + 1]
1115
- model_prev_list[i] = model_prev_list[i + 1]
1116
- t_prev_list[-1] = vec_t
1117
- # We do not need to evaluate the final model value.
1118
- if step < steps:
1119
- model_prev_list[-1] = self.model_fn(x, vec_t)
1120
- elif method in ['singlestep', 'singlestep_fixed']:
1121
- if method == 'singlestep':
1122
- timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
1123
- skip_type=skip_type,
1124
- t_T=t_T, t_0=t_0,
1125
- device=device)
1126
- elif method == 'singlestep_fixed':
1127
- K = steps // order
1128
- orders = [order, ] * K
1129
- timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
1130
- for i, order in enumerate(orders):
1131
- t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
1132
- timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
1133
- N=order, device=device)
1134
- lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
1135
- vec_s, vec_t = t_T_inner.repeat(x.shape[0]), t_0_inner.repeat(x.shape[0])
1136
- h = lambda_inner[-1] - lambda_inner[0]
1137
- r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
1138
- r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
1139
- x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
1140
- if denoise:
1141
- x = self.denoise_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
1142
- return x
1143
-
1144
-
1145
- #############################################################
1146
- # other utility functions
1147
- #############################################################
1148
-
1149
- def interpolate_fn(x, xp, yp):
1150
- """
1151
- A piecewise linear function y = f(x), using xp and yp as keypoints.
1152
- We implement f(x) in a differentiable way (i.e. applicable for autograd).
1153
- The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
1154
-
1155
- Args:
1156
- x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
1157
- xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
1158
- yp: PyTorch tensor with shape [C, K].
1159
- Returns:
1160
- The function values f(x), with shape [N, C].
1161
- """
1162
- N, K = x.shape[0], xp.shape[1]
1163
- all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
1164
- sorted_all_x, x_indices = torch.sort(all_x, dim=2)
1165
- x_idx = torch.argmin(x_indices, dim=2)
1166
- cand_start_idx = x_idx - 1
1167
- start_idx = torch.where(
1168
- torch.eq(x_idx, 0),
1169
- torch.tensor(1, device=x.device),
1170
- torch.where(
1171
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1172
- ),
1173
- )
1174
- end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
1175
- start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
1176
- end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
1177
- start_idx2 = torch.where(
1178
- torch.eq(x_idx, 0),
1179
- torch.tensor(0, device=x.device),
1180
- torch.where(
1181
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1182
- ),
1183
- )
1184
- y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
1185
- start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
1186
- end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
1187
- cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
1188
- return cand
1189
-
1190
-
1191
- def expand_dims(v, dims):
1192
- """
1193
- Expand the tensor `v` to the dim `dims`.
1194
-
1195
- Args:
1196
- `v`: a PyTorch tensor with shape [N].
1197
- `dim`: a `int`.
1198
- Returns:
1199
- a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
1200
- """
1201
- return v[(...,) + (None,) * (dims - 1)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diffusion/how to export onnx.md DELETED
@@ -1,4 +0,0 @@
1
- - Open [onnx_export](onnx_export.py)
2
- - project_name = "dddsp" change "project_name" to your project name
3
- - model_path = f'{project_name}/model_500000.pt' change "model_path" to your model path
4
- - Run
 
 
 
 
 
diffusion/infer_gt_mel.py DELETED
@@ -1,74 +0,0 @@
1
- import numpy as np
2
- import torch
3
- import torch.nn.functional as F
4
- from diffusion.unit2mel import load_model_vocoder
5
-
6
-
7
- class DiffGtMel:
8
- def __init__(self, project_path=None, device=None):
9
- self.project_path = project_path
10
- if device is not None:
11
- self.device = device
12
- else:
13
- self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
14
- self.model = None
15
- self.vocoder = None
16
- self.args = None
17
-
18
- def flush_model(self, project_path, ddsp_config=None):
19
- if (self.model is None) or (project_path != self.project_path):
20
- model, vocoder, args = load_model_vocoder(project_path, device=self.device)
21
- if self.check_args(ddsp_config, args):
22
- self.model = model
23
- self.vocoder = vocoder
24
- self.args = args
25
-
26
- def check_args(self, args1, args2):
27
- if args1.data.block_size != args2.data.block_size:
28
- raise ValueError("DDSP与DIFF模型的block_size不一致")
29
- if args1.data.sampling_rate != args2.data.sampling_rate:
30
- raise ValueError("DDSP与DIFF模型的sampling_rate不一致")
31
- if args1.data.encoder != args2.data.encoder:
32
- raise ValueError("DDSP与DIFF模型的encoder不一致")
33
- return True
34
-
35
- def __call__(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm',
36
- spk_mix_dict=None, start_frame=0):
37
- input_mel = self.vocoder.extract(audio, self.args.data.sampling_rate)
38
- out_mel = self.model(
39
- hubert,
40
- f0,
41
- volume,
42
- spk_id=spk_id,
43
- spk_mix_dict=spk_mix_dict,
44
- gt_spec=input_mel,
45
- infer=True,
46
- infer_speedup=acc,
47
- method=method,
48
- k_step=k_step,
49
- use_tqdm=False)
50
- if start_frame > 0:
51
- out_mel = out_mel[:, start_frame:, :]
52
- f0 = f0[:, start_frame:, :]
53
- output = self.vocoder.infer(out_mel, f0)
54
- if start_frame > 0:
55
- output = F.pad(output, (start_frame * self.vocoder.vocoder_hop_size, 0))
56
- return output
57
-
58
- def infer(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm', silence_front=0,
59
- use_silence=False, spk_mix_dict=None):
60
- start_frame = int(silence_front * self.vocoder.vocoder_sample_rate / self.vocoder.vocoder_hop_size)
61
- if use_silence:
62
- audio = audio[:, start_frame * self.vocoder.vocoder_hop_size:]
63
- f0 = f0[:, start_frame:, :]
64
- hubert = hubert[:, start_frame:, :]
65
- volume = volume[:, start_frame:, :]
66
- _start_frame = 0
67
- else:
68
- _start_frame = start_frame
69
- audio = self.__call__(audio, f0, hubert, volume, acc=acc, spk_id=spk_id, k_step=k_step,
70
- method=method, spk_mix_dict=spk_mix_dict, start_frame=_start_frame)
71
- if use_silence:
72
- if start_frame > 0:
73
- audio = F.pad(audio, (start_frame * self.vocoder.vocoder_hop_size, 0))
74
- return audio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diffusion/logger/__init__.py DELETED
File without changes
diffusion/logger/saver.py DELETED
@@ -1,150 +0,0 @@
1
- '''
2
- author: wayn391@mastertones
3
- '''
4
-
5
- import os
6
- import json
7
- import time
8
- import yaml
9
- import datetime
10
- import torch
11
- import matplotlib.pyplot as plt
12
- from . import utils
13
- from torch.utils.tensorboard import SummaryWriter
14
-
15
- class Saver(object):
16
- def __init__(
17
- self,
18
- args,
19
- initial_global_step=-1):
20
-
21
- self.expdir = args.env.expdir
22
- self.sample_rate = args.data.sampling_rate
23
-
24
- # cold start
25
- self.global_step = initial_global_step
26
- self.init_time = time.time()
27
- self.last_time = time.time()
28
-
29
- # makedirs
30
- os.makedirs(self.expdir, exist_ok=True)
31
-
32
- # path
33
- self.path_log_info = os.path.join(self.expdir, 'log_info.txt')
34
-
35
- # ckpt
36
- os.makedirs(self.expdir, exist_ok=True)
37
-
38
- # writer
39
- self.writer = SummaryWriter(os.path.join(self.expdir, 'logs'))
40
-
41
- # save config
42
- path_config = os.path.join(self.expdir, 'config.yaml')
43
- with open(path_config, "w") as out_config:
44
- yaml.dump(dict(args), out_config)
45
-
46
-
47
- def log_info(self, msg):
48
- '''log method'''
49
- if isinstance(msg, dict):
50
- msg_list = []
51
- for k, v in msg.items():
52
- tmp_str = ''
53
- if isinstance(v, int):
54
- tmp_str = '{}: {:,}'.format(k, v)
55
- else:
56
- tmp_str = '{}: {}'.format(k, v)
57
-
58
- msg_list.append(tmp_str)
59
- msg_str = '\n'.join(msg_list)
60
- else:
61
- msg_str = msg
62
-
63
- # dsplay
64
- print(msg_str)
65
-
66
- # save
67
- with open(self.path_log_info, 'a') as fp:
68
- fp.write(msg_str+'\n')
69
-
70
- def log_value(self, dict):
71
- for k, v in dict.items():
72
- self.writer.add_scalar(k, v, self.global_step)
73
-
74
- def log_spec(self, name, spec, spec_out, vmin=-14, vmax=3.5):
75
- spec_cat = torch.cat([(spec_out - spec).abs() + vmin, spec, spec_out], -1)
76
- spec = spec_cat[0]
77
- if isinstance(spec, torch.Tensor):
78
- spec = spec.cpu().numpy()
79
- fig = plt.figure(figsize=(12, 9))
80
- plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
81
- plt.tight_layout()
82
- self.writer.add_figure(name, fig, self.global_step)
83
-
84
- def log_audio(self, dict):
85
- for k, v in dict.items():
86
- self.writer.add_audio(k, v, global_step=self.global_step, sample_rate=self.sample_rate)
87
-
88
- def get_interval_time(self, update=True):
89
- cur_time = time.time()
90
- time_interval = cur_time - self.last_time
91
- if update:
92
- self.last_time = cur_time
93
- return time_interval
94
-
95
- def get_total_time(self, to_str=True):
96
- total_time = time.time() - self.init_time
97
- if to_str:
98
- total_time = str(datetime.timedelta(
99
- seconds=total_time))[:-5]
100
- return total_time
101
-
102
- def save_model(
103
- self,
104
- model,
105
- optimizer,
106
- name='model',
107
- postfix='',
108
- to_json=False):
109
- # path
110
- if postfix:
111
- postfix = '_' + postfix
112
- path_pt = os.path.join(
113
- self.expdir , name+postfix+'.pt')
114
-
115
- # check
116
- print(' [*] model checkpoint saved: {}'.format(path_pt))
117
-
118
- # save
119
- if optimizer is not None:
120
- torch.save({
121
- 'global_step': self.global_step,
122
- 'model': model.state_dict(),
123
- 'optimizer': optimizer.state_dict()}, path_pt)
124
- else:
125
- torch.save({
126
- 'global_step': self.global_step,
127
- 'model': model.state_dict()}, path_pt)
128
-
129
- # to json
130
- if to_json:
131
- path_json = os.path.join(
132
- self.expdir , name+'.json')
133
- utils.to_json(path_params, path_json)
134
-
135
- def delete_model(self, name='model', postfix=''):
136
- # path
137
- if postfix:
138
- postfix = '_' + postfix
139
- path_pt = os.path.join(
140
- self.expdir , name+postfix+'.pt')
141
-
142
- # delete
143
- if os.path.exists(path_pt):
144
- os.remove(path_pt)
145
- print(' [*] model checkpoint deleted: {}'.format(path_pt))
146
-
147
- def global_step_increment(self):
148
- self.global_step += 1
149
-
150
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diffusion/logger/utils.py DELETED
@@ -1,126 +0,0 @@
1
- import os
2
- import yaml
3
- import json
4
- import pickle
5
- import torch
6
-
7
- def traverse_dir(
8
- root_dir,
9
- extensions,
10
- amount=None,
11
- str_include=None,
12
- str_exclude=None,
13
- is_pure=False,
14
- is_sort=False,
15
- is_ext=True):
16
-
17
- file_list = []
18
- cnt = 0
19
- for root, _, files in os.walk(root_dir):
20
- for file in files:
21
- if any([file.endswith(f".{ext}") for ext in extensions]):
22
- # path
23
- mix_path = os.path.join(root, file)
24
- pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
25
-
26
- # amount
27
- if (amount is not None) and (cnt == amount):
28
- if is_sort:
29
- file_list.sort()
30
- return file_list
31
-
32
- # check string
33
- if (str_include is not None) and (str_include not in pure_path):
34
- continue
35
- if (str_exclude is not None) and (str_exclude in pure_path):
36
- continue
37
-
38
- if not is_ext:
39
- ext = pure_path.split('.')[-1]
40
- pure_path = pure_path[:-(len(ext)+1)]
41
- file_list.append(pure_path)
42
- cnt += 1
43
- if is_sort:
44
- file_list.sort()
45
- return file_list
46
-
47
-
48
-
49
- class DotDict(dict):
50
- def __getattr__(*args):
51
- val = dict.get(*args)
52
- return DotDict(val) if type(val) is dict else val
53
-
54
- __setattr__ = dict.__setitem__
55
- __delattr__ = dict.__delitem__
56
-
57
-
58
- def get_network_paras_amount(model_dict):
59
- info = dict()
60
- for model_name, model in model_dict.items():
61
- # all_params = sum(p.numel() for p in model.parameters())
62
- trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
63
-
64
- info[model_name] = trainable_params
65
- return info
66
-
67
-
68
- def load_config(path_config):
69
- with open(path_config, "r") as config:
70
- args = yaml.safe_load(config)
71
- args = DotDict(args)
72
- # print(args)
73
- return args
74
-
75
- def save_config(path_config,config):
76
- config = dict(config)
77
- with open(path_config, "w") as f:
78
- yaml.dump(config, f)
79
-
80
- def to_json(path_params, path_json):
81
- params = torch.load(path_params, map_location=torch.device('cpu'))
82
- raw_state_dict = {}
83
- for k, v in params.items():
84
- val = v.flatten().numpy().tolist()
85
- raw_state_dict[k] = val
86
-
87
- with open(path_json, 'w') as outfile:
88
- json.dump(raw_state_dict, outfile,indent= "\t")
89
-
90
-
91
- def convert_tensor_to_numpy(tensor, is_squeeze=True):
92
- if is_squeeze:
93
- tensor = tensor.squeeze()
94
- if tensor.requires_grad:
95
- tensor = tensor.detach()
96
- if tensor.is_cuda:
97
- tensor = tensor.cpu()
98
- return tensor.numpy()
99
-
100
-
101
- def load_model(
102
- expdir,
103
- model,
104
- optimizer,
105
- name='model',
106
- postfix='',
107
- device='cpu'):
108
- if postfix == '':
109
- postfix = '_' + postfix
110
- path = os.path.join(expdir, name+postfix)
111
- path_pt = traverse_dir(expdir, ['pt'], is_ext=False)
112
- global_step = 0
113
- if len(path_pt) > 0:
114
- steps = [s[len(path):] for s in path_pt]
115
- maxstep = max([int(s) if s.isdigit() else 0 for s in steps])
116
- if maxstep >= 0:
117
- path_pt = path+str(maxstep)+'.pt'
118
- else:
119
- path_pt = path+'best.pt'
120
- print(' [*] restoring model from', path_pt)
121
- ckpt = torch.load(path_pt, map_location=torch.device(device))
122
- global_step = ckpt['global_step']
123
- model.load_state_dict(ckpt['model'], strict=False)
124
- if ckpt.get('optimizer') != None:
125
- optimizer.load_state_dict(ckpt['optimizer'])
126
- return global_step, model, optimizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diffusion/onnx_export.py DELETED
@@ -1,226 +0,0 @@
1
- from diffusion_onnx import GaussianDiffusion
2
- import os
3
- import yaml
4
- import torch
5
- import torch.nn as nn
6
- import numpy as np
7
- from wavenet import WaveNet
8
- import torch.nn.functional as F
9
- import diffusion
10
-
11
- class DotDict(dict):
12
- def __getattr__(*args):
13
- val = dict.get(*args)
14
- return DotDict(val) if type(val) is dict else val
15
-
16
- __setattr__ = dict.__setitem__
17
- __delattr__ = dict.__delitem__
18
-
19
-
20
- def load_model_vocoder(
21
- model_path,
22
- device='cpu'):
23
- config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
24
- with open(config_file, "r") as config:
25
- args = yaml.safe_load(config)
26
- args = DotDict(args)
27
-
28
- # load model
29
- model = Unit2Mel(
30
- args.data.encoder_out_channels,
31
- args.model.n_spk,
32
- args.model.use_pitch_aug,
33
- 128,
34
- args.model.n_layers,
35
- args.model.n_chans,
36
- args.model.n_hidden)
37
-
38
- print(' [Loading] ' + model_path)
39
- ckpt = torch.load(model_path, map_location=torch.device(device))
40
- model.to(device)
41
- model.load_state_dict(ckpt['model'])
42
- model.eval()
43
- return model, args
44
-
45
-
46
- class Unit2Mel(nn.Module):
47
- def __init__(
48
- self,
49
- input_channel,
50
- n_spk,
51
- use_pitch_aug=False,
52
- out_dims=128,
53
- n_layers=20,
54
- n_chans=384,
55
- n_hidden=256):
56
- super().__init__()
57
- self.unit_embed = nn.Linear(input_channel, n_hidden)
58
- self.f0_embed = nn.Linear(1, n_hidden)
59
- self.volume_embed = nn.Linear(1, n_hidden)
60
- if use_pitch_aug:
61
- self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
62
- else:
63
- self.aug_shift_embed = None
64
- self.n_spk = n_spk
65
- if n_spk is not None and n_spk > 1:
66
- self.spk_embed = nn.Embedding(n_spk, n_hidden)
67
-
68
- # diffusion
69
- self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden)
70
- self.hidden_size = n_hidden
71
- self.speaker_map = torch.zeros((self.n_spk,1,1,n_hidden))
72
-
73
-
74
-
75
- def forward(self, units, mel2ph, f0, volume, g = None):
76
-
77
- '''
78
- input:
79
- B x n_frames x n_unit
80
- return:
81
- dict of B x n_frames x feat
82
- '''
83
-
84
- decoder_inp = F.pad(units, [0, 0, 1, 0])
85
- mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]])
86
- units = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
87
-
88
- x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1))
89
-
90
- if self.n_spk is not None and self.n_spk > 1: # [N, S] * [S, B, 1, H]
91
- g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
92
- g = g * self.speaker_map # [N, S, B, 1, H]
93
- g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
94
- g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
95
- x = x.transpose(1, 2) + g
96
- return x
97
- else:
98
- return x.transpose(1, 2)
99
-
100
-
101
- def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
102
- gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
103
-
104
- '''
105
- input:
106
- B x n_frames x n_unit
107
- return:
108
- dict of B x n_frames x feat
109
- '''
110
- x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
111
- if self.n_spk is not None and self.n_spk > 1:
112
- if spk_mix_dict is not None:
113
- spk_embed_mix = torch.zeros((1,1,self.hidden_size))
114
- for k, v in spk_mix_dict.items():
115
- spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
116
- spk_embeddd = self.spk_embed(spk_id_torch)
117
- self.speaker_map[k] = spk_embeddd
118
- spk_embed_mix = spk_embed_mix + v * spk_embeddd
119
- x = x + spk_embed_mix
120
- else:
121
- x = x + self.spk_embed(spk_id - 1)
122
- self.speaker_map = self.speaker_map.unsqueeze(0)
123
- self.speaker_map = self.speaker_map.detach()
124
- return x.transpose(1, 2)
125
-
126
- def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True):
127
- hubert_hidden_size = 768
128
- n_frames = 100
129
- hubert = torch.randn((1, n_frames, hubert_hidden_size))
130
- mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
131
- f0 = torch.randn((1, n_frames))
132
- volume = torch.randn((1, n_frames))
133
- spk_mix = []
134
- spks = {}
135
- if self.n_spk is not None and self.n_spk > 1:
136
- for i in range(self.n_spk):
137
- spk_mix.append(1.0/float(self.n_spk))
138
- spks.update({i:1.0/float(self.n_spk)})
139
- spk_mix = torch.tensor(spk_mix)
140
- spk_mix = spk_mix.repeat(n_frames, 1)
141
- orgouttt = self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
142
- outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
143
- if export_encoder:
144
- torch.onnx.export(
145
- self,
146
- (hubert, mel2ph, f0, volume, spk_mix),
147
- f"{project_name}_encoder.onnx",
148
- input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
149
- output_names=["mel_pred"],
150
- dynamic_axes={
151
- "hubert": [1],
152
- "f0": [1],
153
- "volume": [1],
154
- "mel2ph": [1],
155
- "spk_mix": [0],
156
- },
157
- opset_version=16
158
- )
159
-
160
- self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after)
161
-
162
- def ExportOnnx(self, project_name=None):
163
- hubert_hidden_size = 768
164
- n_frames = 100
165
- hubert = torch.randn((1, n_frames, hubert_hidden_size))
166
- mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
167
- f0 = torch.randn((1, n_frames))
168
- volume = torch.randn((1, n_frames))
169
- spk_mix = []
170
- spks = {}
171
- if self.n_spk is not None and self.n_spk > 1:
172
- for i in range(self.n_spk):
173
- spk_mix.append(1.0/float(self.n_spk))
174
- spks.update({i:1.0/float(self.n_spk)})
175
- spk_mix = torch.tensor(spk_mix)
176
- orgouttt = self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
177
- outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
178
-
179
- torch.onnx.export(
180
- self,
181
- (hubert, mel2ph, f0, volume, spk_mix),
182
- f"{project_name}_encoder.onnx",
183
- input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
184
- output_names=["mel_pred"],
185
- dynamic_axes={
186
- "hubert": [1],
187
- "f0": [1],
188
- "volume": [1],
189
- "mel2ph": [1]
190
- },
191
- opset_version=16
192
- )
193
-
194
- condition = torch.randn(1,self.decoder.n_hidden,n_frames)
195
- noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32)
196
- pndm_speedup = torch.LongTensor([100])
197
- K_steps = torch.LongTensor([1000])
198
- self.decoder = torch.jit.script(self.decoder)
199
- self.decoder(condition, noise, pndm_speedup, K_steps)
200
-
201
- torch.onnx.export(
202
- self.decoder,
203
- (condition, noise, pndm_speedup, K_steps),
204
- f"{project_name}_diffusion.onnx",
205
- input_names=["condition", "noise", "pndm_speedup", "K_steps"],
206
- output_names=["mel"],
207
- dynamic_axes={
208
- "condition": [2],
209
- "noise": [3],
210
- },
211
- opset_version=16
212
- )
213
-
214
-
215
- if __name__ == "__main__":
216
- project_name = "dddsp"
217
- model_path = f'{project_name}/model_500000.pt'
218
-
219
- model, _ = load_model_vocoder(model_path)
220
-
221
- # 分开Diffusion导出(需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样)
222
- model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True)
223
-
224
- # 合并Diffusion导出(Encoder和Diffusion分开,直接将Encoder的结果和初始噪声输入Diffusion即可)
225
- # model.ExportOnnx(project_name)
226
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diffusion/solver.py DELETED
@@ -1,195 +0,0 @@
1
- import os
2
- import time
3
- import numpy as np
4
- import torch
5
- import librosa
6
- from diffusion.logger.saver import Saver
7
- from diffusion.logger import utils
8
- from torch import autocast
9
- from torch.cuda.amp import GradScaler
10
-
11
- def test(args, model, vocoder, loader_test, saver):
12
- print(' [*] testing...')
13
- model.eval()
14
-
15
- # losses
16
- test_loss = 0.
17
-
18
- # intialization
19
- num_batches = len(loader_test)
20
- rtf_all = []
21
-
22
- # run
23
- with torch.no_grad():
24
- for bidx, data in enumerate(loader_test):
25
- fn = data['name'][0].split("/")[-1]
26
- speaker = data['name'][0].split("/")[-2]
27
- print('--------')
28
- print('{}/{} - {}'.format(bidx, num_batches, fn))
29
-
30
- # unpack data
31
- for k in data.keys():
32
- if not k.startswith('name'):
33
- data[k] = data[k].to(args.device)
34
- print('>>', data['name'][0])
35
-
36
- # forward
37
- st_time = time.time()
38
- mel = model(
39
- data['units'],
40
- data['f0'],
41
- data['volume'],
42
- data['spk_id'],
43
- gt_spec=None,
44
- infer=True,
45
- infer_speedup=args.infer.speedup,
46
- method=args.infer.method)
47
- signal = vocoder.infer(mel, data['f0'])
48
- ed_time = time.time()
49
-
50
- # RTF
51
- run_time = ed_time - st_time
52
- song_time = signal.shape[-1] / args.data.sampling_rate
53
- rtf = run_time / song_time
54
- print('RTF: {} | {} / {}'.format(rtf, run_time, song_time))
55
- rtf_all.append(rtf)
56
-
57
- # loss
58
- for i in range(args.train.batch_size):
59
- loss = model(
60
- data['units'],
61
- data['f0'],
62
- data['volume'],
63
- data['spk_id'],
64
- gt_spec=data['mel'],
65
- infer=False)
66
- test_loss += loss.item()
67
-
68
- # log mel
69
- saver.log_spec(f"{speaker}_{fn}.wav", data['mel'], mel)
70
-
71
- # log audi
72
- path_audio = data['name_ext'][0]
73
- audio, sr = librosa.load(path_audio, sr=args.data.sampling_rate)
74
- if len(audio.shape) > 1:
75
- audio = librosa.to_mono(audio)
76
- audio = torch.from_numpy(audio).unsqueeze(0).to(signal)
77
- saver.log_audio({f"{speaker}_{fn}_gt.wav": audio,f"{speaker}_{fn}_pred.wav": signal})
78
- # report
79
- test_loss /= args.train.batch_size
80
- test_loss /= num_batches
81
-
82
- # check
83
- print(' [test_loss] test_loss:', test_loss)
84
- print(' Real Time Factor', np.mean(rtf_all))
85
- return test_loss
86
-
87
-
88
- def train(args, initial_global_step, model, optimizer, scheduler, vocoder, loader_train, loader_test):
89
- # saver
90
- saver = Saver(args, initial_global_step=initial_global_step)
91
-
92
- # model size
93
- params_count = utils.get_network_paras_amount({'model': model})
94
- saver.log_info('--- model size ---')
95
- saver.log_info(params_count)
96
-
97
- # run
98
- num_batches = len(loader_train)
99
- model.train()
100
- saver.log_info('======= start training =======')
101
- scaler = GradScaler()
102
- if args.train.amp_dtype == 'fp32':
103
- dtype = torch.float32
104
- elif args.train.amp_dtype == 'fp16':
105
- dtype = torch.float16
106
- elif args.train.amp_dtype == 'bf16':
107
- dtype = torch.bfloat16
108
- else:
109
- raise ValueError(' [x] Unknown amp_dtype: ' + args.train.amp_dtype)
110
- saver.log_info("epoch|batch_idx/num_batches|output_dir|batch/s|lr|time|step")
111
- for epoch in range(args.train.epochs):
112
- for batch_idx, data in enumerate(loader_train):
113
- saver.global_step_increment()
114
- optimizer.zero_grad()
115
-
116
- # unpack data
117
- for k in data.keys():
118
- if not k.startswith('name'):
119
- data[k] = data[k].to(args.device)
120
-
121
- # forward
122
- if dtype == torch.float32:
123
- loss = model(data['units'].float(), data['f0'], data['volume'], data['spk_id'],
124
- aug_shift = data['aug_shift'], gt_spec=data['mel'].float(), infer=False)
125
- else:
126
- with autocast(device_type=args.device, dtype=dtype):
127
- loss = model(data['units'], data['f0'], data['volume'], data['spk_id'],
128
- aug_shift = data['aug_shift'], gt_spec=data['mel'], infer=False)
129
-
130
- # handle nan loss
131
- if torch.isnan(loss):
132
- raise ValueError(' [x] nan loss ')
133
- else:
134
- # backpropagate
135
- if dtype == torch.float32:
136
- loss.backward()
137
- optimizer.step()
138
- else:
139
- scaler.scale(loss).backward()
140
- scaler.step(optimizer)
141
- scaler.update()
142
- scheduler.step()
143
-
144
- # log loss
145
- if saver.global_step % args.train.interval_log == 0:
146
- current_lr = optimizer.param_groups[0]['lr']
147
- saver.log_info(
148
- 'epoch: {} | {:3d}/{:3d} | {} | batch/s: {:.2f} | lr: {:.6} | loss: {:.3f} | time: {} | step: {}'.format(
149
- epoch,
150
- batch_idx,
151
- num_batches,
152
- args.env.expdir,
153
- args.train.interval_log/saver.get_interval_time(),
154
- current_lr,
155
- loss.item(),
156
- saver.get_total_time(),
157
- saver.global_step
158
- )
159
- )
160
-
161
- saver.log_value({
162
- 'train/loss': loss.item()
163
- })
164
-
165
- saver.log_value({
166
- 'train/lr': current_lr
167
- })
168
-
169
- # validation
170
- if saver.global_step % args.train.interval_val == 0:
171
- optimizer_save = optimizer if args.train.save_opt else None
172
-
173
- # save latest
174
- saver.save_model(model, optimizer_save, postfix=f'{saver.global_step}')
175
- last_val_step = saver.global_step - args.train.interval_val
176
- if last_val_step % args.train.interval_force_save != 0:
177
- saver.delete_model(postfix=f'{last_val_step}')
178
-
179
- # run testing set
180
- test_loss = test(args, model, vocoder, loader_test, saver)
181
-
182
- # log loss
183
- saver.log_info(
184
- ' --- <validation> --- \nloss: {:.3f}. '.format(
185
- test_loss,
186
- )
187
- )
188
-
189
- saver.log_value({
190
- 'validation/loss': test_loss
191
- })
192
-
193
- model.train()
194
-
195
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diffusion/unit2mel.py DELETED
@@ -1,147 +0,0 @@
1
- import os
2
- import yaml
3
- import torch
4
- import torch.nn as nn
5
- import numpy as np
6
- from .diffusion import GaussianDiffusion
7
- from .wavenet import WaveNet
8
- from .vocoder import Vocoder
9
-
10
- class DotDict(dict):
11
- def __getattr__(*args):
12
- val = dict.get(*args)
13
- return DotDict(val) if type(val) is dict else val
14
-
15
- __setattr__ = dict.__setitem__
16
- __delattr__ = dict.__delitem__
17
-
18
-
19
- def load_model_vocoder(
20
- model_path,
21
- device='cpu',
22
- config_path = None
23
- ):
24
- if config_path is None: config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
25
- else: config_file = config_path
26
-
27
- with open(config_file, "r") as config:
28
- args = yaml.safe_load(config)
29
- args = DotDict(args)
30
-
31
- # load vocoder
32
- vocoder = Vocoder(args.vocoder.type, args.vocoder.ckpt, device=device)
33
-
34
- # load model
35
- model = Unit2Mel(
36
- args.data.encoder_out_channels,
37
- args.model.n_spk,
38
- args.model.use_pitch_aug,
39
- vocoder.dimension,
40
- args.model.n_layers,
41
- args.model.n_chans,
42
- args.model.n_hidden)
43
-
44
- print(' [Loading] ' + model_path)
45
- ckpt = torch.load(model_path, map_location=torch.device(device))
46
- model.to(device)
47
- model.load_state_dict(ckpt['model'])
48
- model.eval()
49
- return model, vocoder, args
50
-
51
-
52
- class Unit2Mel(nn.Module):
53
- def __init__(
54
- self,
55
- input_channel,
56
- n_spk,
57
- use_pitch_aug=False,
58
- out_dims=128,
59
- n_layers=20,
60
- n_chans=384,
61
- n_hidden=256):
62
- super().__init__()
63
- self.unit_embed = nn.Linear(input_channel, n_hidden)
64
- self.f0_embed = nn.Linear(1, n_hidden)
65
- self.volume_embed = nn.Linear(1, n_hidden)
66
- if use_pitch_aug:
67
- self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
68
- else:
69
- self.aug_shift_embed = None
70
- self.n_spk = n_spk
71
- if n_spk is not None and n_spk > 1:
72
- self.spk_embed = nn.Embedding(n_spk, n_hidden)
73
-
74
- self.n_hidden = n_hidden
75
- # diffusion
76
- self.decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden), out_dims=out_dims)
77
- self.input_channel = input_channel
78
-
79
- def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
80
- gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
81
-
82
- '''
83
- input:
84
- B x n_frames x n_unit
85
- return:
86
- dict of B x n_frames x feat
87
- '''
88
- x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
89
- if self.n_spk is not None and self.n_spk > 1:
90
- if spk_mix_dict is not None:
91
- spk_embed_mix = torch.zeros((1,1,self.hidden_size))
92
- for k, v in spk_mix_dict.items():
93
- spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
94
- spk_embeddd = self.spk_embed(spk_id_torch)
95
- self.speaker_map[k] = spk_embeddd
96
- spk_embed_mix = spk_embed_mix + v * spk_embeddd
97
- x = x + spk_embed_mix
98
- else:
99
- x = x + self.spk_embed(spk_id - 1)
100
- self.speaker_map = self.speaker_map.unsqueeze(0)
101
- self.speaker_map = self.speaker_map.detach()
102
- return x.transpose(1, 2)
103
-
104
- def init_spkmix(self, n_spk):
105
- self.speaker_map = torch.zeros((n_spk,1,1,self.n_hidden))
106
- hubert_hidden_size = self.input_channel
107
- n_frames = 10
108
- hubert = torch.randn((1, n_frames, hubert_hidden_size))
109
- mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
110
- f0 = torch.randn((1, n_frames))
111
- volume = torch.randn((1, n_frames))
112
- spks = {}
113
- for i in range(n_spk):
114
- spks.update({i:1.0/float(self.n_spk)})
115
- orgouttt = self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
116
-
117
- def forward(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
118
- gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
119
-
120
- '''
121
- input:
122
- B x n_frames x n_unit
123
- return:
124
- dict of B x n_frames x feat
125
- '''
126
-
127
- x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
128
- if self.n_spk is not None and self.n_spk > 1:
129
- if spk_mix_dict is not None:
130
- for k, v in spk_mix_dict.items():
131
- spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
132
- x = x + v * self.spk_embed(spk_id_torch)
133
- else:
134
- if spk_id.shape[1] > 1:
135
- g = spk_id.reshape((spk_id.shape[0], spk_id.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
136
- g = g * self.speaker_map # [N, S, B, 1, H]
137
- g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
138
- g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
139
- x = x + g
140
- else:
141
- x = x + self.spk_embed(spk_id)
142
- if self.aug_shift_embed is not None and aug_shift is not None:
143
- x = x + self.aug_shift_embed(aug_shift / 5)
144
- x = self.decoder(x, gt_spec=gt_spec, infer=infer, infer_speedup=infer_speedup, method=method, k_step=k_step, use_tqdm=use_tqdm)
145
-
146
- return x
147
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diffusion/vocoder.py DELETED
@@ -1,94 +0,0 @@
1
- import torch
2
- from vdecoder.nsf_hifigan.nvSTFT import STFT
3
- from vdecoder.nsf_hifigan.models import load_model,load_config
4
- from torchaudio.transforms import Resample
5
-
6
-
7
- class Vocoder:
8
- def __init__(self, vocoder_type, vocoder_ckpt, device = None):
9
- if device is None:
10
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
11
- self.device = device
12
-
13
- if vocoder_type == 'nsf-hifigan':
14
- self.vocoder = NsfHifiGAN(vocoder_ckpt, device = device)
15
- elif vocoder_type == 'nsf-hifigan-log10':
16
- self.vocoder = NsfHifiGANLog10(vocoder_ckpt, device = device)
17
- else:
18
- raise ValueError(f" [x] Unknown vocoder: {vocoder_type}")
19
-
20
- self.resample_kernel = {}
21
- self.vocoder_sample_rate = self.vocoder.sample_rate()
22
- self.vocoder_hop_size = self.vocoder.hop_size()
23
- self.dimension = self.vocoder.dimension()
24
-
25
- def extract(self, audio, sample_rate, keyshift=0):
26
-
27
- # resample
28
- if sample_rate == self.vocoder_sample_rate:
29
- audio_res = audio
30
- else:
31
- key_str = str(sample_rate)
32
- if key_str not in self.resample_kernel:
33
- self.resample_kernel[key_str] = Resample(sample_rate, self.vocoder_sample_rate, lowpass_filter_width = 128).to(self.device)
34
- audio_res = self.resample_kernel[key_str](audio)
35
-
36
- # extract
37
- mel = self.vocoder.extract(audio_res, keyshift=keyshift) # B, n_frames, bins
38
- return mel
39
-
40
- def infer(self, mel, f0):
41
- f0 = f0[:,:mel.size(1),0] # B, n_frames
42
- audio = self.vocoder(mel, f0)
43
- return audio
44
-
45
-
46
- class NsfHifiGAN(torch.nn.Module):
47
- def __init__(self, model_path, device=None):
48
- super().__init__()
49
- if device is None:
50
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
51
- self.device = device
52
- self.model_path = model_path
53
- self.model = None
54
- self.h = load_config(model_path)
55
- self.stft = STFT(
56
- self.h.sampling_rate,
57
- self.h.num_mels,
58
- self.h.n_fft,
59
- self.h.win_size,
60
- self.h.hop_size,
61
- self.h.fmin,
62
- self.h.fmax)
63
-
64
- def sample_rate(self):
65
- return self.h.sampling_rate
66
-
67
- def hop_size(self):
68
- return self.h.hop_size
69
-
70
- def dimension(self):
71
- return self.h.num_mels
72
-
73
- def extract(self, audio, keyshift=0):
74
- mel = self.stft.get_mel(audio, keyshift=keyshift).transpose(1, 2) # B, n_frames, bins
75
- return mel
76
-
77
- def forward(self, mel, f0):
78
- if self.model is None:
79
- print('| Load HifiGAN: ', self.model_path)
80
- self.model, self.h = load_model(self.model_path, device=self.device)
81
- with torch.no_grad():
82
- c = mel.transpose(1, 2)
83
- audio = self.model(c, f0)
84
- return audio
85
-
86
- class NsfHifiGANLog10(NsfHifiGAN):
87
- def forward(self, mel, f0):
88
- if self.model is None:
89
- print('| Load HifiGAN: ', self.model_path)
90
- self.model, self.h = load_model(self.model_path, device=self.device)
91
- with torch.no_grad():
92
- c = 0.434294 * mel.transpose(1, 2)
93
- audio = self.model(c, f0)
94
- return audio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diffusion/wavenet.py DELETED
@@ -1,108 +0,0 @@
1
- import math
2
- from math import sqrt
3
-
4
- import torch
5
- import torch.nn as nn
6
- import torch.nn.functional as F
7
- from torch.nn import Mish
8
-
9
-
10
- class Conv1d(torch.nn.Conv1d):
11
- def __init__(self, *args, **kwargs):
12
- super().__init__(*args, **kwargs)
13
- nn.init.kaiming_normal_(self.weight)
14
-
15
-
16
- class SinusoidalPosEmb(nn.Module):
17
- def __init__(self, dim):
18
- super().__init__()
19
- self.dim = dim
20
-
21
- def forward(self, x):
22
- device = x.device
23
- half_dim = self.dim // 2
24
- emb = math.log(10000) / (half_dim - 1)
25
- emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
26
- emb = x[:, None] * emb[None, :]
27
- emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
28
- return emb
29
-
30
-
31
- class ResidualBlock(nn.Module):
32
- def __init__(self, encoder_hidden, residual_channels, dilation):
33
- super().__init__()
34
- self.residual_channels = residual_channels
35
- self.dilated_conv = nn.Conv1d(
36
- residual_channels,
37
- 2 * residual_channels,
38
- kernel_size=3,
39
- padding=dilation,
40
- dilation=dilation
41
- )
42
- self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
43
- self.conditioner_projection = nn.Conv1d(encoder_hidden, 2 * residual_channels, 1)
44
- self.output_projection = nn.Conv1d(residual_channels, 2 * residual_channels, 1)
45
-
46
- def forward(self, x, conditioner, diffusion_step):
47
- diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
48
- conditioner = self.conditioner_projection(conditioner)
49
- y = x + diffusion_step
50
-
51
- y = self.dilated_conv(y) + conditioner
52
-
53
- # Using torch.split instead of torch.chunk to avoid using onnx::Slice
54
- gate, filter = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
55
- y = torch.sigmoid(gate) * torch.tanh(filter)
56
-
57
- y = self.output_projection(y)
58
-
59
- # Using torch.split instead of torch.chunk to avoid using onnx::Slice
60
- residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
61
- return (x + residual) / math.sqrt(2.0), skip
62
-
63
-
64
- class WaveNet(nn.Module):
65
- def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256):
66
- super().__init__()
67
- self.input_projection = Conv1d(in_dims, n_chans, 1)
68
- self.diffusion_embedding = SinusoidalPosEmb(n_chans)
69
- self.mlp = nn.Sequential(
70
- nn.Linear(n_chans, n_chans * 4),
71
- Mish(),
72
- nn.Linear(n_chans * 4, n_chans)
73
- )
74
- self.residual_layers = nn.ModuleList([
75
- ResidualBlock(
76
- encoder_hidden=n_hidden,
77
- residual_channels=n_chans,
78
- dilation=1
79
- )
80
- for i in range(n_layers)
81
- ])
82
- self.skip_projection = Conv1d(n_chans, n_chans, 1)
83
- self.output_projection = Conv1d(n_chans, in_dims, 1)
84
- nn.init.zeros_(self.output_projection.weight)
85
-
86
- def forward(self, spec, diffusion_step, cond):
87
- """
88
- :param spec: [B, 1, M, T]
89
- :param diffusion_step: [B, 1]
90
- :param cond: [B, M, T]
91
- :return:
92
- """
93
- x = spec.squeeze(1)
94
- x = self.input_projection(x) # [B, residual_channel, T]
95
-
96
- x = F.relu(x)
97
- diffusion_step = self.diffusion_embedding(diffusion_step)
98
- diffusion_step = self.mlp(diffusion_step)
99
- skip = []
100
- for layer in self.residual_layers:
101
- x, skip_connection = layer(x, cond, diffusion_step)
102
- skip.append(skip_connection)
103
-
104
- x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers))
105
- x = self.skip_projection(x)
106
- x = F.relu(x)
107
- x = self.output_projection(x) # [B, mel_bins, T]
108
- return x[:, None, :, :]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inference/infer_tool.py CHANGED
@@ -1,27 +1,24 @@
 
1
  import hashlib
2
  import io
3
  import json
4
  import logging
5
  import os
 
6
  import time
7
  from pathlib import Path
8
- from inference import slicer
9
- import gc
10
 
11
  import librosa
12
  import numpy as np
 
13
  # import onnxruntime
14
  import soundfile
15
  import torch
16
  import torchaudio
17
 
18
- import cluster
19
  import utils
 
20
  from models import SynthesizerTrn
21
- import pickle
22
-
23
- from diffusion.unit2mel import load_model_vocoder
24
- import yaml
25
 
26
  logging.getLogger('matplotlib').setLevel(logging.WARNING)
27
 
@@ -131,6 +128,7 @@ class Svc(object):
131
  spk_mix_enable=False,
132
  feature_retrieval=False
133
  ):
 
134
  self.net_g_path = net_g_path
135
  self.only_diffusion = only_diffusion
136
  self.shallow_diffusion = shallow_diffusion
@@ -141,53 +139,26 @@ class Svc(object):
141
  self.dev = torch.device(device)
142
  self.net_g_ms = None
143
  if not self.only_diffusion:
144
- self.hps_ms = utils.get_hparams_from_file(config_path)
145
  self.target_sample = self.hps_ms.data.sampling_rate
146
  self.hop_size = self.hps_ms.data.hop_length
147
  self.spk2id = self.hps_ms.spk
148
- try:
149
- self.vol_embedding = self.hps_ms.model.vol_embedding
150
- except Exception as e:
151
- self.vol_embedding = False
152
- try:
153
- self.speech_encoder = self.hps_ms.model.speech_encoder
154
- except Exception as e:
155
- self.speech_encoder = 'vec768l12'
156
 
157
  self.nsf_hifigan_enhance = nsf_hifigan_enhance
158
- if self.shallow_diffusion or self.only_diffusion:
159
- if os.path.exists(diffusion_model_path) and os.path.exists(diffusion_model_path):
160
- self.diffusion_model, self.vocoder, self.diffusion_args = load_model_vocoder(diffusion_model_path,
161
- self.dev,
162
- config_path=diffusion_config_path)
163
- if self.only_diffusion:
164
- self.target_sample = self.diffusion_args.data.sampling_rate
165
- self.hop_size = self.diffusion_args.data.block_size
166
- self.spk2id = self.diffusion_args.spk
167
- self.speech_encoder = self.diffusion_args.data.encoder
168
- if spk_mix_enable:
169
- self.diffusion_model.init_spkmix(len(self.spk2id))
170
- else:
171
- print("No diffusion model or config found. Shallow diffusion mode will False")
172
- self.shallow_diffusion = self.only_diffusion = False
173
 
174
  # load hubert and model
175
  self.load_model(spk_mix_enable)
176
  # self.hubert_model = utils.get_speech_encoder(self.speech_encoder, device=self.dev)
177
  self.volume_extractor = utils.Volume_Extractor(self.hop_size)
178
 
179
- if os.path.exists(cluster_model_path):
180
- if self.feature_retrieval:
181
- with open(cluster_model_path, "rb") as f:
182
- self.cluster_model = pickle.load(f)
183
- self.big_npy = None
184
- self.now_spk_id = -1
185
- else:
186
- self.cluster_model = cluster.get_cluster_model(cluster_model_path)
187
- else:
188
- self.feature_retrieval = False
189
 
190
- if self.shallow_diffusion: self.nsf_hifigan_enhance = False
 
 
 
191
  if self.nsf_hifigan_enhance:
192
  from modules.enhancer import Enhancer
193
  self.enhancer = Enhancer('nsf-hifigan', 'pretrain/nsf_hifigan/model', device=self.dev)
@@ -199,6 +170,7 @@ class Svc(object):
199
  self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
200
  **self.hps_ms.model)
201
  _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
 
202
  if "half" in self.net_g_path and torch.cuda.is_available():
203
  _ = self.net_g_ms.half().eval().to(self.dev)
204
  else:
@@ -208,11 +180,13 @@ class Svc(object):
208
 
209
  def get_unit_f0(self, wav, tran, cluster_infer_ratio, speaker, f0_filter, f0_predictor, cr_threshold=0.05):
210
 
211
- f0_predictor_object = utils.get_f0_predictor(f0_predictor, hop_length=self.hop_size,
212
- sampling_rate=self.target_sample, device=self.dev,
213
- threshold=cr_threshold)
 
 
 
214
 
215
- f0, uv = f0_predictor_object.compute_f0_uv(wav)
216
  if f0_filter and sum(f0) == 0:
217
  raise F0FilterException("No voice detected")
218
  f0 = torch.FloatTensor(f0).to(self.dev)
@@ -222,36 +196,13 @@ class Svc(object):
222
  f0 = f0.unsqueeze(0)
223
  uv = uv.unsqueeze(0)
224
 
225
- wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
226
- wav16k = torch.from_numpy(wav16k).to(self.dev)
 
 
 
227
  c = self.hubert_model.encoder(wav16k)
228
- c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
229
-
230
- if cluster_infer_ratio != 0:
231
- if self.feature_retrieval:
232
- speaker_id = self.spk2id.get(speaker)
233
- if speaker_id is None:
234
- raise RuntimeError("The name you entered is not in the speaker list!")
235
- if not speaker_id and type(speaker) is int:
236
- if len(self.spk2id.__dict__) >= speaker:
237
- speaker_id = speaker
238
- feature_index = self.cluster_model[speaker_id]
239
- feat_np = c.transpose(0, 1).cpu().numpy()
240
- if self.big_npy is None or self.now_spk_id != speaker_id:
241
- self.big_npy = feature_index.reconstruct_n(0, feature_index.ntotal)
242
- self.now_spk_id = speaker_id
243
- print("starting feature retrieval...")
244
- score, ix = feature_index.search(feat_np, k=8)
245
- weight = np.square(1 / score)
246
- weight /= weight.sum(axis=1, keepdims=True)
247
- npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
248
- c = cluster_infer_ratio * npy + (1 - cluster_infer_ratio) * feat_np
249
- c = torch.FloatTensor(c).to(self.dev).transpose(0, 1)
250
- print("end feature retrieval...")
251
- else:
252
- cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
253
- cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
254
- c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
255
 
256
  c = c.unsqueeze(0)
257
  return c, f0, uv
@@ -270,7 +221,11 @@ class Svc(object):
270
  second_encoding=False,
271
  loudness_envelope_adjustment=1
272
  ):
273
- wav, sr = librosa.load(raw_path, sr=self.target_sample)
 
 
 
 
274
  if spk_mix:
275
  c, f0, uv = self.get_unit_f0(wav, tran, 0, None, f0_filter, f0_predictor, cr_threshold=cr_threshold)
276
  n_frames = f0.size(1)
@@ -286,8 +241,9 @@ class Svc(object):
286
  c, f0, uv = self.get_unit_f0(wav, tran, cluster_infer_ratio, speaker, f0_filter, f0_predictor,
287
  cr_threshold=cr_threshold)
288
  n_frames = f0.size(1)
289
- if "half" in self.net_g_path and torch.cuda.is_available():
290
- c = c.half()
 
291
  with torch.no_grad():
292
  start = time.time()
293
  vol = None
@@ -301,17 +257,22 @@ class Svc(object):
301
  else:
302
  audio = torch.FloatTensor(wav).to(self.dev)
303
  audio_mel = None
 
 
 
 
304
  if self.only_diffusion or self.shallow_diffusion:
305
- vol = self.volume_extractor.extract(audio[None, :])[None, :, None].to(self.dev) if vol == None else vol[
306
  :,
307
  :,
308
  None]
309
  if self.shallow_diffusion and second_encoding:
310
- audio16k = librosa.resample(audio.detach().cpu().numpy(), orig_sr=self.target_sample,
311
- target_sr=16000)
312
- audio16k = torch.from_numpy(audio16k).to(self.dev)
 
313
  c = self.hubert_model.encoder(audio16k)
314
- c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
315
  f0 = f0[:, :, None]
316
  c = c.transpose(-1, -2)
317
  audio_mel = self.diffusion_model(
@@ -460,7 +421,8 @@ class Svc(object):
460
  datas = [data]
461
  for k, dat in enumerate(datas):
462
  per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds != 0 else length
463
- if clip_seconds != 0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
 
464
  # padd
465
  pad_len = int(audio_sr * pad_seconds)
466
  dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
@@ -496,51 +458,3 @@ class Svc(object):
496
  return np.array(audio)
497
 
498
 
499
- class RealTimeVC:
500
- def __init__(self):
501
- self.last_chunk = None
502
- self.last_o = None
503
- self.chunk_len = 16000 # chunk length
504
- self.pre_len = 3840 # cross fade length, multiples of 640
505
-
506
- # Input and output are 1-dimensional numpy waveform arrays
507
-
508
- def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path,
509
- cluster_infer_ratio=0,
510
- auto_predict_f0=False,
511
- noice_scale=0.4,
512
- f0_filter=False):
513
-
514
- import maad
515
- audio, sr = torchaudio.load(input_wav_path)
516
- audio = audio.cpu().numpy()[0]
517
- temp_wav = io.BytesIO()
518
- if self.last_chunk is None:
519
- input_wav_path.seek(0)
520
-
521
- audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path,
522
- cluster_infer_ratio=cluster_infer_ratio,
523
- auto_predict_f0=auto_predict_f0,
524
- noice_scale=noice_scale,
525
- f0_filter=f0_filter)
526
-
527
- audio = audio.cpu().numpy()
528
- self.last_chunk = audio[-self.pre_len:]
529
- self.last_o = audio
530
- return audio[-self.chunk_len:]
531
- else:
532
- audio = np.concatenate([self.last_chunk, audio])
533
- soundfile.write(temp_wav, audio, sr, format="wav")
534
- temp_wav.seek(0)
535
-
536
- audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav,
537
- cluster_infer_ratio=cluster_infer_ratio,
538
- auto_predict_f0=auto_predict_f0,
539
- noice_scale=noice_scale,
540
- f0_filter=f0_filter)
541
-
542
- audio = audio.cpu().numpy()
543
- ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
544
- self.last_chunk = audio[-self.pre_len:]
545
- self.last_o = audio
546
- return ret[self.chunk_len:2 * self.chunk_len]
 
1
+ import gc
2
  import hashlib
3
  import io
4
  import json
5
  import logging
6
  import os
7
+ import pickle
8
  import time
9
  from pathlib import Path
 
 
10
 
11
  import librosa
12
  import numpy as np
13
+
14
  # import onnxruntime
15
  import soundfile
16
  import torch
17
  import torchaudio
18
 
 
19
  import utils
20
+ from inference import slicer
21
  from models import SynthesizerTrn
 
 
 
 
22
 
23
  logging.getLogger('matplotlib').setLevel(logging.WARNING)
24
 
 
128
  spk_mix_enable=False,
129
  feature_retrieval=False
130
  ):
131
+ self.hubert_model = None
132
  self.net_g_path = net_g_path
133
  self.only_diffusion = only_diffusion
134
  self.shallow_diffusion = shallow_diffusion
 
139
  self.dev = torch.device(device)
140
  self.net_g_ms = None
141
  if not self.only_diffusion:
142
+ self.hps_ms = utils.get_hparams_from_file(config_path, True)
143
  self.target_sample = self.hps_ms.data.sampling_rate
144
  self.hop_size = self.hps_ms.data.hop_length
145
  self.spk2id = self.hps_ms.spk
146
+ self.unit_interpolate_mode = self.hps_ms.data.unit_interpolate_mode if self.hps_ms.data.unit_interpolate_mode is not None else 'left'
147
+ self.vol_embedding = self.hps_ms.model.vol_embedding if self.hps_ms.model.vol_embedding is not None else False
148
+ self.speech_encoder = self.hps_ms.model.speech_encoder if self.hps_ms.model.speech_encoder is not None else 'vec768l12'
 
 
 
 
 
149
 
150
  self.nsf_hifigan_enhance = nsf_hifigan_enhance
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
152
  # load hubert and model
153
  self.load_model(spk_mix_enable)
154
  # self.hubert_model = utils.get_speech_encoder(self.speech_encoder, device=self.dev)
155
  self.volume_extractor = utils.Volume_Extractor(self.hop_size)
156
 
 
 
 
 
 
 
 
 
 
 
157
 
158
+ self.feature_retrieval = False
159
+
160
+ if self.shallow_diffusion:
161
+ self.nsf_hifigan_enhance = False
162
  if self.nsf_hifigan_enhance:
163
  from modules.enhancer import Enhancer
164
  self.enhancer = Enhancer('nsf-hifigan', 'pretrain/nsf_hifigan/model', device=self.dev)
 
170
  self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
171
  **self.hps_ms.model)
172
  _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
173
+ self.dtype = list(self.net_g_ms.parameters())[0].dtype
174
  if "half" in self.net_g_path and torch.cuda.is_available():
175
  _ = self.net_g_ms.half().eval().to(self.dev)
176
  else:
 
180
 
181
  def get_unit_f0(self, wav, tran, cluster_infer_ratio, speaker, f0_filter, f0_predictor, cr_threshold=0.05):
182
 
183
+ if not hasattr(self,
184
+ "f0_predictor_object") or self.f0_predictor_object is None or f0_predictor != self.f0_predictor_object.name:
185
+ self.f0_predictor_object = utils.get_f0_predictor(f0_predictor, hop_length=self.hop_size,
186
+ sampling_rate=self.target_sample, device=self.dev,
187
+ threshold=cr_threshold)
188
+ f0, uv = self.f0_predictor_object.compute_f0_uv(wav)
189
 
 
190
  if f0_filter and sum(f0) == 0:
191
  raise F0FilterException("No voice detected")
192
  f0 = torch.FloatTensor(f0).to(self.dev)
 
196
  f0 = f0.unsqueeze(0)
197
  uv = uv.unsqueeze(0)
198
 
199
+ wav = torch.from_numpy(wav).to(self.dev)
200
+ if not hasattr(self, "audio16k_resample_transform"):
201
+ self.audio16k_resample_transform = torchaudio.transforms.Resample(self.target_sample, 16000).to(self.dev)
202
+ wav16k = self.audio16k_resample_transform(wav[None, :])[0]
203
+
204
  c = self.hubert_model.encoder(wav16k)
205
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1], self.unit_interpolate_mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206
 
207
  c = c.unsqueeze(0)
208
  return c, f0, uv
 
221
  second_encoding=False,
222
  loudness_envelope_adjustment=1
223
  ):
224
+ torchaudio.set_audio_backend("soundfile")
225
+ wav, sr = torchaudio.load(raw_path)
226
+ if not hasattr(self, "audio_resample_transform") or self.audio16k_resample_transform.orig_freq != sr:
227
+ self.audio_resample_transform = torchaudio.transforms.Resample(sr, self.target_sample)
228
+ wav = self.audio_resample_transform(wav).numpy()[0]
229
  if spk_mix:
230
  c, f0, uv = self.get_unit_f0(wav, tran, 0, None, f0_filter, f0_predictor, cr_threshold=cr_threshold)
231
  n_frames = f0.size(1)
 
241
  c, f0, uv = self.get_unit_f0(wav, tran, cluster_infer_ratio, speaker, f0_filter, f0_predictor,
242
  cr_threshold=cr_threshold)
243
  n_frames = f0.size(1)
244
+ c = c.to(self.dtype)
245
+ f0 = f0.to(self.dtype)
246
+ uv = uv.to(self.dtype)
247
  with torch.no_grad():
248
  start = time.time()
249
  vol = None
 
257
  else:
258
  audio = torch.FloatTensor(wav).to(self.dev)
259
  audio_mel = None
260
+ if self.dtype != torch.float32:
261
+ c = c.to(torch.float32)
262
+ f0 = f0.to(torch.float32)
263
+ uv = uv.to(torch.float32)
264
  if self.only_diffusion or self.shallow_diffusion:
265
+ vol = self.volume_extractor.extract(audio[None, :])[None, :, None].to(self.dev) if vol is None else vol[
266
  :,
267
  :,
268
  None]
269
  if self.shallow_diffusion and second_encoding:
270
+ if not hasattr(self, "audio16k_resample_transform"):
271
+ self.audio16k_resample_transform = torchaudio.transforms.Resample(self.target_sample, 16000).to(
272
+ self.dev)
273
+ audio16k = self.audio16k_resample_transform(audio[None, :])[0]
274
  c = self.hubert_model.encoder(audio16k)
275
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1], self.unit_interpolate_mode)
276
  f0 = f0[:, :, None]
277
  c = c.transpose(-1, -2)
278
  audio_mel = self.diffusion_model(
 
421
  datas = [data]
422
  for k, dat in enumerate(datas):
423
  per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds != 0 else length
424
+ if clip_seconds != 0:
425
+ print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
426
  # padd
427
  pad_len = int(audio_sr * pad_seconds)
428
  dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
 
458
  return np.array(audio)
459
 
460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inference/infer_tool_grad.py CHANGED
@@ -1,22 +1,18 @@
1
- import hashlib
2
- import json
3
  import logging
4
  import os
5
- import time
6
- from pathlib import Path
7
- import io
8
  import librosa
9
- import maad
10
  import numpy as np
11
- from inference import slicer
12
  import parselmouth
13
  import soundfile
14
  import torch
15
  import torchaudio
16
 
17
- from hubert import hubert_model
18
  import utils
 
19
  from models import SynthesizerTrn
 
20
  logging.getLogger('numba').setLevel(logging.WARNING)
21
  logging.getLogger('matplotlib').setLevel(logging.WARNING)
22
 
@@ -93,7 +89,7 @@ class VitsSvc(object):
93
  def set_device(self, device):
94
  self.device = torch.device(device)
95
  self.hubert_soft.to(self.device)
96
- if self.SVCVITS != None:
97
  self.SVCVITS.to(self.device)
98
 
99
  def loadCheckpoint(self, path):
 
1
+ import io
 
2
  import logging
3
  import os
4
+
 
 
5
  import librosa
 
6
  import numpy as np
 
7
  import parselmouth
8
  import soundfile
9
  import torch
10
  import torchaudio
11
 
 
12
  import utils
13
+ from inference import slicer
14
  from models import SynthesizerTrn
15
+
16
  logging.getLogger('numba').setLevel(logging.WARNING)
17
  logging.getLogger('matplotlib').setLevel(logging.WARNING)
18
 
 
89
  def set_device(self, device):
90
  self.device = torch.device(device)
91
  self.hubert_soft.to(self.device)
92
+ if self.SVCVITS is not None:
93
  self.SVCVITS.to(self.device)
94
 
95
  def loadCheckpoint(self, path):
inference/slicer.py CHANGED
@@ -117,8 +117,8 @@ class Slicer:
117
  return chunk_dict
118
 
119
 
120
- def cut(input_audio, db_thresh=-30, min_len=5000):
121
- audio, sr = librosa.load(input_audio, sr=None)
122
  slicer = Slicer(
123
  sr=sr,
124
  threshold=db_thresh,
 
117
  return chunk_dict
118
 
119
 
120
+ def cut(audio_path, db_thresh=-30, min_len=5000):
121
+ audio, sr = librosa.load(audio_path, sr=None)
122
  slicer = Slicer(
123
  sr=sr,
124
  threshold=db_thresh,
inference_main.py DELETED
@@ -1,181 +0,0 @@
1
- import io
2
- import logging
3
- import time
4
- from pathlib import Path
5
- from spkmix import spk_mix_map
6
- import librosa
7
- import matplotlib.pyplot as plt
8
- import numpy as np
9
- import soundfile
10
- from inference import infer_tool
11
- from inference import slicer
12
- from inference.infer_tool import Svc
13
-
14
- logging.getLogger('numba').setLevel(logging.WARNING)
15
- chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
16
-
17
-
18
- def main():
19
- import argparse
20
-
21
- parser = argparse.ArgumentParser(description='sovits4 inference')
22
-
23
- # 一定要设置的部分
24
- parser.add_argument('-m', '--model_path', type=str, default="logs/44k/", help='模型路径')
25
- parser.add_argument('-c', '--config_path', type=str, default="configs/", help='配置文件路径')
26
- parser.add_argument('-cl', '--clip', type=float, default=0, help='音频强制切片,默认0为自动切片,单位为秒/s')
27
- parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["test.wav"],
28
- help='wav文件名列表,放在raw文件夹下')
29
- parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)')
30
- parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['buyizi'], help='合成目标说话人名称')
31
-
32
- # 可选项部分
33
- parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,
34
- help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
35
- parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt",
36
- help='聚类模型或特征检索索引路径,如果没有训练聚类或特征检索则随便填')
37
- parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0,
38
- help='聚类方案或特征检索占比,范围0-1,若没有训练聚类模型或特征检索则默认0即可')
39
- parser.add_argument('-lg', '--linear_gradient', type=float, default=0,
40
- help='两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,单位为秒')
41
- parser.add_argument('-f0p', '--f0_predictor', type=str, default="harvest",
42
- help='选择F0预测器,可选择crepe,pm,dio,harvest,默认为pm(注意:crepe为原F0使用均值滤波器)')
43
- parser.add_argument('-eh', '--enhance', action='store_true', default=False,
44
- help='是否使用NSF_HIFIGAN增强器,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭')
45
- parser.add_argument('-shd', '--shallow_diffusion', action='store_true', default=False,
46
- help='是否使用浅层扩散,使用后可解决一部分电音问题,默认关闭,该选项打开时,NSF_HIFIGAN增强器将会被禁止')
47
- parser.add_argument('-usm', '--use_spk_mix', action='store_true', default=False, help='是否使用角色融合')
48
- parser.add_argument('-lea', '--loudness_envelope_adjustment', type=float, default=1,
49
- help='输入源响度包络替换输出响度包络融合比例,越靠近1越使用输出响度包络')
50
- parser.add_argument('-fr', '--feature_retrieval', action='store_true', default=False,
51
- help='是否使用特征检索,如果使用聚类模型将被禁用,且cm与cr参数将会变成特征检索的索引路径与混合比例')
52
-
53
- # 浅扩散设置
54
- parser.add_argument('-dm', '--diffusion_model_path', type=str, default="logs/44k/diffusion/model_0.pt",
55
- help='扩散模型路径')
56
- parser.add_argument('-dc', '--diffusion_config_path', type=str, default="logs/44k/diffusion/config.yaml",
57
- help='扩散模型配置文件路径')
58
- parser.add_argument('-ks', '--k_step', type=int, default=100, help='扩散步数,越大越接近扩散模型的结果,默认100')
59
- parser.add_argument('-se', '--second_encoding', action='store_true', default=False,
60
- help='二次编码,浅扩散前会对原始音频进行二次编码,玄学选项,有时候效果好,有时候效果差')
61
- parser.add_argument('-od', '--only_diffusion', action='store_true', default=False,
62
- help='纯扩散模式,该模式不会加载sovits模型,以扩散模型推理')
63
-
64
- # 不用动的部分
65
- parser.add_argument('-sd', '--slice_db', type=int, default=-40,
66
- help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
67
- parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu')
68
- parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
69
- parser.add_argument('-p', '--pad_seconds', type=float, default=0.5,
70
- help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
71
- parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
72
- parser.add_argument('-lgr', '--linear_gradient_retain', type=float, default=0.75,
73
- help='自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭')
74
- parser.add_argument('-eak', '--enhancer_adaptive_key', type=int, default=0,
75
- help='使增强器适应更高的音域(单位为半音数)|默认为0')
76
- parser.add_argument('-ft', '--f0_filter_threshold', type=float, default=0.05,
77
- help='F0过滤阈值,只有使用crepe时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音')
78
-
79
- def preprocess_args(args1):
80
- spk1 = args1.spk_list[0]
81
- args1.model_path += f"{spk1}.pth"
82
- args1.config_path += f"config_{spk1}.json"
83
- args1.clip = 30
84
-
85
- if spk1 == 'tomori':
86
- args1.feature_retrieval = True
87
- args1.cluster_model_path = "logs/44k/tomori_index.pkl"
88
- args1.cluster_infer_ratio = 0.5
89
- args1.f0_predictor = 'crepe'
90
-
91
- return args1
92
-
93
- args = parser.parse_args()
94
- args = preprocess_args(args)
95
-
96
- clean_names = args.clean_names
97
- trans = args.trans
98
- spk_list = args.spk_list
99
- slice_db = args.slice_db
100
- wav_format = args.wav_format
101
- auto_predict_f0 = args.auto_predict_f0
102
- cluster_infer_ratio = args.cluster_infer_ratio
103
- noice_scale = args.noice_scale
104
- pad_seconds = args.pad_seconds
105
- clip = args.clip
106
- lg = args.linear_gradient
107
- lgr = args.linear_gradient_retain
108
- f0p = args.f0_predictor
109
- enhance = args.enhance
110
- enhancer_adaptive_key = args.enhancer_adaptive_key
111
- cr_threshold = args.f0_filter_threshold
112
- diffusion_model_path = args.diffusion_model_path
113
- diffusion_config_path = args.diffusion_config_path
114
- k_step = args.k_step
115
- only_diffusion = args.only_diffusion
116
- shallow_diffusion = args.shallow_diffusion
117
- use_spk_mix = args.use_spk_mix
118
- second_encoding = args.second_encoding
119
- loudness_envelope_adjustment = args.loudness_envelope_adjustment
120
-
121
- svc_model = Svc(args.model_path,
122
- args.config_path,
123
- args.device,
124
- args.cluster_model_path,
125
- enhance,
126
- diffusion_model_path,
127
- diffusion_config_path,
128
- shallow_diffusion,
129
- only_diffusion,
130
- use_spk_mix,
131
- args.feature_retrieval)
132
-
133
- infer_tool.mkdir(["raw", "results"])
134
-
135
- if len(spk_mix_map) <= 1:
136
- use_spk_mix = False
137
- if use_spk_mix:
138
- spk_list = [spk_mix_map]
139
-
140
- infer_tool.fill_a_to_b(trans, clean_names)
141
- for clean_name, tran in zip(clean_names, trans):
142
- raw_audio_path = f"raw/{clean_name}"
143
- if "." not in raw_audio_path:
144
- raw_audio_path += ".wav"
145
- infer_tool.format_wav(raw_audio_path)
146
- for spk in spk_list:
147
- kwarg = {
148
- "raw_audio_path": raw_audio_path,
149
- "spk": spk,
150
- "tran": tran,
151
- "slice_db": slice_db,
152
- "cluster_infer_ratio": cluster_infer_ratio,
153
- "auto_predict_f0": auto_predict_f0,
154
- "noice_scale": noice_scale,
155
- "pad_seconds": pad_seconds,
156
- "clip_seconds": clip,
157
- "lg_num": lg,
158
- "lgr_num": lgr,
159
- "f0_predictor": f0p,
160
- "enhancer_adaptive_key": enhancer_adaptive_key,
161
- "cr_threshold": cr_threshold,
162
- "k_step": k_step,
163
- "use_spk_mix": use_spk_mix,
164
- "second_encoding": second_encoding,
165
- "loudness_envelope_adjustment": loudness_envelope_adjustment
166
- }
167
- audio = svc_model.slice_inference(**kwarg)
168
- key = "auto" if auto_predict_f0 else f"{tran}key"
169
- cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
170
- isdiffusion = "sovits"
171
- if shallow_diffusion: isdiffusion = "sovdiff"
172
- if only_diffusion: isdiffusion = "diff"
173
- if use_spk_mix:
174
- spk = "spk_mix"
175
- res_path = f'results/{clean_name}_{key}_{spk}{cluster_name}_{isdiffusion}.{wav_format}'
176
- soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
177
- svc_model.clear_empty()
178
-
179
-
180
- if __name__ == '__main__':
181
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models.py CHANGED
@@ -1,20 +1,17 @@
1
- import copy
2
- import math
3
  import torch
4
  from torch import nn
 
5
  from torch.nn import functional as F
 
6
 
7
  import modules.attentions as attentions
8
  import modules.commons as commons
9
  import modules.modules as modules
10
-
11
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
12
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
13
-
14
  import utils
15
- from modules.commons import init_weights, get_padding
16
  from utils import f0_to_coarse
17
 
 
18
  class ResidualCouplingBlock(nn.Module):
19
  def __init__(self,
20
  channels,
@@ -23,7 +20,9 @@ class ResidualCouplingBlock(nn.Module):
23
  dilation_rate,
24
  n_layers,
25
  n_flows=4,
26
- gin_channels=0):
 
 
27
  super().__init__()
28
  self.channels = channels
29
  self.hidden_channels = hidden_channels
@@ -34,10 +33,53 @@ class ResidualCouplingBlock(nn.Module):
34
  self.gin_channels = gin_channels
35
 
36
  self.flows = nn.ModuleList()
 
 
 
37
  for i in range(n_flows):
38
  self.flows.append(
39
  modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
40
- gin_channels=gin_channels, mean_only=True))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  self.flows.append(modules.Flip())
42
 
43
  def forward(self, x, x_mask, g=None, reverse=False):
@@ -125,7 +167,7 @@ class DiscriminatorP(torch.nn.Module):
125
  super(DiscriminatorP, self).__init__()
126
  self.period = period
127
  self.use_spectral_norm = use_spectral_norm
128
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
129
  self.convs = nn.ModuleList([
130
  norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
131
  norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
@@ -160,7 +202,7 @@ class DiscriminatorP(torch.nn.Module):
160
  class DiscriminatorS(torch.nn.Module):
161
  def __init__(self, use_spectral_norm=False):
162
  super(DiscriminatorS, self).__init__()
163
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
164
  self.convs = nn.ModuleList([
165
  norm_f(Conv1d(1, 16, 15, 1, padding=7)),
166
  norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
@@ -321,6 +363,12 @@ class SynthesizerTrn(nn.Module):
321
  sampling_rate=44100,
322
  vol_embedding=False,
323
  vocoder_name = "nsf-hifigan",
 
 
 
 
 
 
324
  **kwargs):
325
 
326
  super().__init__()
@@ -343,6 +391,9 @@ class SynthesizerTrn(nn.Module):
343
  self.ssl_dim = ssl_dim
344
  self.vol_embedding = vol_embedding
345
  self.emb_g = nn.Embedding(n_speakers, gin_channels)
 
 
 
346
  if vol_embedding:
347
  self.emb_vol = nn.Linear(1, hidden_channels)
348
 
@@ -367,9 +418,11 @@ class SynthesizerTrn(nn.Module):
367
  "upsample_initial_channel": upsample_initial_channel,
368
  "upsample_kernel_sizes": upsample_kernel_sizes,
369
  "gin_channels": gin_channels,
 
370
  }
371
 
372
-
 
373
  if vocoder_name == "nsf-hifigan":
374
  from vdecoder.hifigan.models import Generator
375
  self.dec = Generator(h=hps)
@@ -382,17 +435,21 @@ class SynthesizerTrn(nn.Module):
382
  self.dec = Generator(h=hps)
383
 
384
  self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
385
- self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
386
- self.f0_decoder = F0Decoder(
387
- 1,
388
- hidden_channels,
389
- filter_channels,
390
- n_heads,
391
- n_layers,
392
- kernel_size,
393
- p_dropout,
394
- spk_channels=gin_channels
395
- )
 
 
 
 
396
  self.emb_uv = nn.Embedding(2, hidden_channels)
397
  self.character_mix = False
398
 
@@ -407,17 +464,21 @@ class SynthesizerTrn(nn.Module):
407
  g = self.emb_g(g).transpose(1,2)
408
 
409
  # vol proj
410
- vol = self.emb_vol(vol[:,:,None]).transpose(1,2) if vol!=None and self.vol_embedding else 0
411
 
412
  # ssl prenet
413
  x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
414
  x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2) + vol
415
-
416
  # f0 predict
417
- lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
418
- norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
419
- pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
420
-
 
 
 
 
421
  # encoder
422
  z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
423
  z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
@@ -431,6 +492,7 @@ class SynthesizerTrn(nn.Module):
431
 
432
  return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
433
 
 
434
  def infer(self, c, f0, uv, g=None, noice_scale=0.35, seed=52468, predict_f0=False, vol = None):
435
 
436
  if c.device == torch.device("cuda"):
@@ -452,11 +514,13 @@ class SynthesizerTrn(nn.Module):
452
 
453
  x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
454
  # vol proj
455
- vol = self.emb_vol(vol[:,:,None]).transpose(1,2) if vol!=None and self.vol_embedding else 0
456
-
457
- x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2) + vol
458
 
459
- if predict_f0:
 
 
 
 
 
460
  lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
461
  norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
462
  pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
 
 
 
1
  import torch
2
  from torch import nn
3
+ from torch.nn import Conv1d, Conv2d
4
  from torch.nn import functional as F
5
+ from torch.nn.utils import spectral_norm, weight_norm
6
 
7
  import modules.attentions as attentions
8
  import modules.commons as commons
9
  import modules.modules as modules
 
 
 
 
10
  import utils
11
+ from modules.commons import get_padding
12
  from utils import f0_to_coarse
13
 
14
+
15
  class ResidualCouplingBlock(nn.Module):
16
  def __init__(self,
17
  channels,
 
20
  dilation_rate,
21
  n_layers,
22
  n_flows=4,
23
+ gin_channels=0,
24
+ share_parameter=False
25
+ ):
26
  super().__init__()
27
  self.channels = channels
28
  self.hidden_channels = hidden_channels
 
33
  self.gin_channels = gin_channels
34
 
35
  self.flows = nn.ModuleList()
36
+
37
+ self.wn = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=gin_channels) if share_parameter else None
38
+
39
  for i in range(n_flows):
40
  self.flows.append(
41
  modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
42
+ gin_channels=gin_channels, mean_only=True, wn_sharing_parameter=self.wn))
43
+ self.flows.append(modules.Flip())
44
+
45
+ def forward(self, x, x_mask, g=None, reverse=False):
46
+ if not reverse:
47
+ for flow in self.flows:
48
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
49
+ else:
50
+ for flow in reversed(self.flows):
51
+ x = flow(x, x_mask, g=g, reverse=reverse)
52
+ return x
53
+
54
+ class TransformerCouplingBlock(nn.Module):
55
+ def __init__(self,
56
+ channels,
57
+ hidden_channels,
58
+ filter_channels,
59
+ n_heads,
60
+ n_layers,
61
+ kernel_size,
62
+ p_dropout,
63
+ n_flows=4,
64
+ gin_channels=0,
65
+ share_parameter=False
66
+ ):
67
+
68
+ super().__init__()
69
+ self.channels = channels
70
+ self.hidden_channels = hidden_channels
71
+ self.kernel_size = kernel_size
72
+ self.n_layers = n_layers
73
+ self.n_flows = n_flows
74
+ self.gin_channels = gin_channels
75
+
76
+ self.flows = nn.ModuleList()
77
+
78
+ self.wn = attentions.FFT(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = self.gin_channels) if share_parameter else None
79
+
80
+ for i in range(n_flows):
81
+ self.flows.append(
82
+ modules.TransformerCouplingLayer(channels, hidden_channels, kernel_size, n_layers, n_heads, p_dropout, filter_channels, mean_only=True, wn_sharing_parameter=self.wn, gin_channels = self.gin_channels))
83
  self.flows.append(modules.Flip())
84
 
85
  def forward(self, x, x_mask, g=None, reverse=False):
 
167
  super(DiscriminatorP, self).__init__()
168
  self.period = period
169
  self.use_spectral_norm = use_spectral_norm
170
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
171
  self.convs = nn.ModuleList([
172
  norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
173
  norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
 
202
  class DiscriminatorS(torch.nn.Module):
203
  def __init__(self, use_spectral_norm=False):
204
  super(DiscriminatorS, self).__init__()
205
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
206
  self.convs = nn.ModuleList([
207
  norm_f(Conv1d(1, 16, 15, 1, padding=7)),
208
  norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
 
363
  sampling_rate=44100,
364
  vol_embedding=False,
365
  vocoder_name = "nsf-hifigan",
366
+ use_depthwise_conv = False,
367
+ use_automatic_f0_prediction = True,
368
+ flow_share_parameter = False,
369
+ n_flow_layer = 4,
370
+ n_layers_trans_flow = 3,
371
+ use_transformer_flow = False,
372
  **kwargs):
373
 
374
  super().__init__()
 
391
  self.ssl_dim = ssl_dim
392
  self.vol_embedding = vol_embedding
393
  self.emb_g = nn.Embedding(n_speakers, gin_channels)
394
+ self.use_depthwise_conv = use_depthwise_conv
395
+ self.use_automatic_f0_prediction = use_automatic_f0_prediction
396
+ self.n_layers_trans_flow = n_layers_trans_flow
397
  if vol_embedding:
398
  self.emb_vol = nn.Linear(1, hidden_channels)
399
 
 
418
  "upsample_initial_channel": upsample_initial_channel,
419
  "upsample_kernel_sizes": upsample_kernel_sizes,
420
  "gin_channels": gin_channels,
421
+ "use_depthwise_conv":use_depthwise_conv
422
  }
423
 
424
+ modules.set_Conv1dModel(self.use_depthwise_conv)
425
+
426
  if vocoder_name == "nsf-hifigan":
427
  from vdecoder.hifigan.models import Generator
428
  self.dec = Generator(h=hps)
 
435
  self.dec = Generator(h=hps)
436
 
437
  self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
438
+ if use_transformer_flow:
439
+ self.flow = TransformerCouplingBlock(inter_channels, hidden_channels, filter_channels, n_heads, n_layers_trans_flow, 5, p_dropout, n_flow_layer, gin_channels=gin_channels, share_parameter= flow_share_parameter)
440
+ else:
441
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, n_flow_layer, gin_channels=gin_channels, share_parameter= flow_share_parameter)
442
+ if self.use_automatic_f0_prediction:
443
+ self.f0_decoder = F0Decoder(
444
+ 1,
445
+ hidden_channels,
446
+ filter_channels,
447
+ n_heads,
448
+ n_layers,
449
+ kernel_size,
450
+ p_dropout,
451
+ spk_channels=gin_channels
452
+ )
453
  self.emb_uv = nn.Embedding(2, hidden_channels)
454
  self.character_mix = False
455
 
 
464
  g = self.emb_g(g).transpose(1,2)
465
 
466
  # vol proj
467
+ vol = self.emb_vol(vol[:,:,None]).transpose(1,2) if vol is not None and self.vol_embedding else 0
468
 
469
  # ssl prenet
470
  x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
471
  x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2) + vol
472
+
473
  # f0 predict
474
+ if self.use_automatic_f0_prediction:
475
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
476
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
477
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
478
+ else:
479
+ lf0 = 0
480
+ norm_lf0 = 0
481
+ pred_lf0 = 0
482
  # encoder
483
  z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
484
  z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
 
492
 
493
  return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
494
 
495
+ @torch.no_grad()
496
  def infer(self, c, f0, uv, g=None, noice_scale=0.35, seed=52468, predict_f0=False, vol = None):
497
 
498
  if c.device == torch.device("cuda"):
 
514
 
515
  x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
516
  # vol proj
 
 
 
517
 
518
+ vol = self.emb_vol(vol[:,:,None]).transpose(1,2) if vol is not None and self.vol_embedding else 0
519
+
520
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2) + vol
521
+
522
+
523
+ if self.use_automatic_f0_prediction and predict_f0:
524
  lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
525
  norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
526
  pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
modules/DSConv.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from torch.nn.utils import remove_weight_norm, weight_norm
3
+
4
+
5
+ class Depthwise_Separable_Conv1D(nn.Module):
6
+ def __init__(
7
+ self,
8
+ in_channels,
9
+ out_channels,
10
+ kernel_size,
11
+ stride = 1,
12
+ padding = 0,
13
+ dilation = 1,
14
+ bias = True,
15
+ padding_mode = 'zeros', # TODO: refine this type
16
+ device=None,
17
+ dtype=None
18
+ ):
19
+ super().__init__()
20
+ self.depth_conv = nn.Conv1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels,stride = stride,padding=padding,dilation=dilation,bias=bias,padding_mode=padding_mode,device=device,dtype=dtype)
21
+ self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, device=device,dtype=dtype)
22
+
23
+ def forward(self, input):
24
+ return self.point_conv(self.depth_conv(input))
25
+
26
+ def weight_norm(self):
27
+ self.depth_conv = weight_norm(self.depth_conv, name = 'weight')
28
+ self.point_conv = weight_norm(self.point_conv, name = 'weight')
29
+
30
+ def remove_weight_norm(self):
31
+ self.depth_conv = remove_weight_norm(self.depth_conv, name = 'weight')
32
+ self.point_conv = remove_weight_norm(self.point_conv, name = 'weight')
33
+
34
+ class Depthwise_Separable_TransposeConv1D(nn.Module):
35
+ def __init__(
36
+ self,
37
+ in_channels,
38
+ out_channels,
39
+ kernel_size,
40
+ stride = 1,
41
+ padding = 0,
42
+ output_padding = 0,
43
+ bias = True,
44
+ dilation = 1,
45
+ padding_mode = 'zeros', # TODO: refine this type
46
+ device=None,
47
+ dtype=None
48
+ ):
49
+ super().__init__()
50
+ self.depth_conv = nn.ConvTranspose1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels,stride = stride,output_padding=output_padding,padding=padding,dilation=dilation,bias=bias,padding_mode=padding_mode,device=device,dtype=dtype)
51
+ self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, device=device,dtype=dtype)
52
+
53
+ def forward(self, input):
54
+ return self.point_conv(self.depth_conv(input))
55
+
56
+ def weight_norm(self):
57
+ self.depth_conv = weight_norm(self.depth_conv, name = 'weight')
58
+ self.point_conv = weight_norm(self.point_conv, name = 'weight')
59
+
60
+ def remove_weight_norm(self):
61
+ remove_weight_norm(self.depth_conv, name = 'weight')
62
+ remove_weight_norm(self.point_conv, name = 'weight')
63
+
64
+
65
+ def weight_norm_modules(module, name = 'weight', dim = 0):
66
+ if isinstance(module,Depthwise_Separable_Conv1D) or isinstance(module,Depthwise_Separable_TransposeConv1D):
67
+ module.weight_norm()
68
+ return module
69
+ else:
70
+ return weight_norm(module,name,dim)
71
+
72
+ def remove_weight_norm_modules(module, name = 'weight'):
73
+ if isinstance(module,Depthwise_Separable_Conv1D) or isinstance(module,Depthwise_Separable_TransposeConv1D):
74
+ module.remove_weight_norm()
75
+ else:
76
+ remove_weight_norm(module,name)
modules/F0Predictor/CrepeF0Predictor.py CHANGED
@@ -1,7 +1,9 @@
1
- from modules.F0Predictor.F0Predictor import F0Predictor
2
- from modules.F0Predictor.crepe import CrepePitchExtractor
3
  import torch
4
 
 
 
 
 
5
  class CrepeF0Predictor(F0Predictor):
6
  def __init__(self,hop_length=512,f0_min=50,f0_max=1100,device=None,sampling_rate=44100,threshold=0.05,model="full"):
7
  self.F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device,threshold=threshold,model=model)
@@ -11,6 +13,7 @@ class CrepeF0Predictor(F0Predictor):
11
  self.device = device
12
  self.threshold = threshold
13
  self.sampling_rate = sampling_rate
 
14
 
15
  def compute_f0(self,wav,p_len=None):
16
  x = torch.FloatTensor(wav).to(self.device)
 
 
 
1
  import torch
2
 
3
+ from modules.F0Predictor.crepe import CrepePitchExtractor
4
+ from modules.F0Predictor.F0Predictor import F0Predictor
5
+
6
+
7
  class CrepeF0Predictor(F0Predictor):
8
  def __init__(self,hop_length=512,f0_min=50,f0_max=1100,device=None,sampling_rate=44100,threshold=0.05,model="full"):
9
  self.F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device,threshold=threshold,model=model)
 
13
  self.device = device
14
  self.threshold = threshold
15
  self.sampling_rate = sampling_rate
16
+ self.name = "crepe"
17
 
18
  def compute_f0(self,wav,p_len=None):
19
  x = torch.FloatTensor(wav).to(self.device)
modules/F0Predictor/DioF0Predictor.py CHANGED
@@ -1,6 +1,8 @@
1
- from modules.F0Predictor.F0Predictor import F0Predictor
2
- import pyworld
3
  import numpy as np
 
 
 
 
4
 
5
  class DioF0Predictor(F0Predictor):
6
  def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
@@ -8,44 +10,31 @@ class DioF0Predictor(F0Predictor):
8
  self.f0_min = f0_min
9
  self.f0_max = f0_max
10
  self.sampling_rate = sampling_rate
 
11
 
12
  def interpolate_f0(self,f0):
13
  '''
14
  对F0进行插值处理
15
  '''
 
 
 
16
 
17
- data = np.reshape(f0, (f0.size, 1))
18
-
19
- vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
20
- vuv_vector[data > 0.0] = 1.0
21
- vuv_vector[data <= 0.0] = 0.0
22
-
23
- ip_data = data
24
-
25
- frame_number = data.size
26
- last_value = 0.0
27
- for i in range(frame_number):
28
- if data[i] <= 0.0:
29
- j = i + 1
30
- for j in range(i + 1, frame_number):
31
- if data[j] > 0.0:
32
- break
33
- if j < frame_number - 1:
34
- if last_value > 0.0:
35
- step = (data[j] - data[i - 1]) / float(j - i)
36
- for k in range(i, j):
37
- ip_data[k] = data[i - 1] + step * (k - i + 1)
38
- else:
39
- for k in range(i, j):
40
- ip_data[k] = data[j]
41
- else:
42
- for k in range(i, frame_number):
43
- ip_data[k] = last_value
44
- else:
45
- ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
46
- last_value = data[i]
47
-
48
- return ip_data[:,0], vuv_vector[:,0]
49
 
50
  def resize_f0(self,x, target_len):
51
  source = np.array(x)
 
 
 
1
  import numpy as np
2
+ import pyworld
3
+
4
+ from modules.F0Predictor.F0Predictor import F0Predictor
5
+
6
 
7
  class DioF0Predictor(F0Predictor):
8
  def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
 
10
  self.f0_min = f0_min
11
  self.f0_max = f0_max
12
  self.sampling_rate = sampling_rate
13
+ self.name = "dio"
14
 
15
  def interpolate_f0(self,f0):
16
  '''
17
  对F0进行插值处理
18
  '''
19
+ vuv_vector = np.zeros_like(f0, dtype=np.float32)
20
+ vuv_vector[f0 > 0.0] = 1.0
21
+ vuv_vector[f0 <= 0.0] = 0.0
22
 
23
+ nzindex = np.nonzero(f0)[0]
24
+ data = f0[nzindex]
25
+ nzindex = nzindex.astype(np.float32)
26
+ time_org = self.hop_length / self.sampling_rate * nzindex
27
+ time_frame = np.arange(f0.shape[0]) * self.hop_length / self.sampling_rate
28
+
29
+ if data.shape[0] <= 0:
30
+ return np.zeros(f0.shape[0], dtype=np.float32),vuv_vector
31
+
32
+ if data.shape[0] == 1:
33
+ return np.ones(f0.shape[0], dtype=np.float32) * f0[0],vuv_vector
34
+
35
+ f0 = np.interp(time_frame, time_org, data, left=data[0], right=data[-1])
36
+
37
+ return f0,vuv_vector
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
  def resize_f0(self,x, target_len):
40
  source = np.array(x)
modules/F0Predictor/FCPEF0Predictor.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Union
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn.functional as F
6
+
7
+ from modules.F0Predictor.F0Predictor import F0Predictor
8
+
9
+ from .fcpe.model import FCPEInfer
10
+
11
+
12
+ class FCPEF0Predictor(F0Predictor):
13
+ def __init__(self, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sampling_rate=44100,
14
+ threshold=0.05):
15
+ self.fcpe = FCPEInfer(model_path="pretrain/fcpe.pt", device=device, dtype=dtype)
16
+ self.hop_length = hop_length
17
+ self.f0_min = f0_min
18
+ self.f0_max = f0_max
19
+ if device is None:
20
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
21
+ else:
22
+ self.device = device
23
+ self.threshold = threshold
24
+ self.sampling_rate = sampling_rate
25
+ self.dtype = dtype
26
+ self.name = "fcpe"
27
+
28
+ def repeat_expand(
29
+ self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
30
+ ):
31
+ ndim = content.ndim
32
+
33
+ if content.ndim == 1:
34
+ content = content[None, None]
35
+ elif content.ndim == 2:
36
+ content = content[None]
37
+
38
+ assert content.ndim == 3
39
+
40
+ is_np = isinstance(content, np.ndarray)
41
+ if is_np:
42
+ content = torch.from_numpy(content)
43
+
44
+ results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
45
+
46
+ if is_np:
47
+ results = results.numpy()
48
+
49
+ if ndim == 1:
50
+ return results[0, 0]
51
+ elif ndim == 2:
52
+ return results[0]
53
+
54
+ def post_process(self, x, sampling_rate, f0, pad_to):
55
+ if isinstance(f0, np.ndarray):
56
+ f0 = torch.from_numpy(f0).float().to(x.device)
57
+
58
+ if pad_to is None:
59
+ return f0
60
+
61
+ f0 = self.repeat_expand(f0, pad_to)
62
+
63
+ vuv_vector = torch.zeros_like(f0)
64
+ vuv_vector[f0 > 0.0] = 1.0
65
+ vuv_vector[f0 <= 0.0] = 0.0
66
+
67
+ # 去掉0频率, 并线性插值
68
+ nzindex = torch.nonzero(f0).squeeze()
69
+ f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
70
+ time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
71
+ time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
72
+
73
+ vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]
74
+
75
+ if f0.shape[0] <= 0:
76
+ return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(), vuv_vector.cpu().numpy()
77
+ if f0.shape[0] == 1:
78
+ return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[
79
+ 0]).cpu().numpy(), vuv_vector.cpu().numpy()
80
+
81
+ # 大概可以用 torch 重写?
82
+ f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
83
+ # vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
84
+
85
+ return f0, vuv_vector.cpu().numpy()
86
+
87
+ def compute_f0(self, wav, p_len=None):
88
+ x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
89
+ if p_len is None:
90
+ p_len = x.shape[0] // self.hop_length
91
+ else:
92
+ assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
93
+ f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
94
+ if torch.all(f0 == 0):
95
+ rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
96
+ return rtn, rtn
97
+ return self.post_process(x, self.sampling_rate, f0, p_len)[0]
98
+
99
+ def compute_f0_uv(self, wav, p_len=None):
100
+ x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
101
+ if p_len is None:
102
+ p_len = x.shape[0] // self.hop_length
103
+ else:
104
+ assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
105
+ f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
106
+ if torch.all(f0 == 0):
107
+ rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
108
+ return rtn, rtn
109
+ return self.post_process(x, self.sampling_rate, f0, p_len)
modules/F0Predictor/HarvestF0Predictor.py CHANGED
@@ -1,6 +1,8 @@
1
- from modules.F0Predictor.F0Predictor import F0Predictor
2
- import pyworld
3
  import numpy as np
 
 
 
 
4
 
5
  class HarvestF0Predictor(F0Predictor):
6
  def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
@@ -8,45 +10,31 @@ class HarvestF0Predictor(F0Predictor):
8
  self.f0_min = f0_min
9
  self.f0_max = f0_max
10
  self.sampling_rate = sampling_rate
 
11
 
12
  def interpolate_f0(self,f0):
13
  '''
14
  对F0进行插值处理
15
  '''
 
 
 
16
 
17
- data = np.reshape(f0, (f0.size, 1))
18
-
19
- vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
20
- vuv_vector[data > 0.0] = 1.0
21
- vuv_vector[data <= 0.0] = 0.0
22
-
23
- ip_data = data
24
-
25
- frame_number = data.size
26
- last_value = 0.0
27
- for i in range(frame_number):
28
- if data[i] <= 0.0:
29
- j = i + 1
30
- for j in range(i + 1, frame_number):
31
- if data[j] > 0.0:
32
- break
33
- if j < frame_number - 1:
34
- if last_value > 0.0:
35
- step = (data[j] - data[i - 1]) / float(j - i)
36
- for k in range(i, j):
37
- ip_data[k] = data[i - 1] + step * (k - i + 1)
38
- else:
39
- for k in range(i, j):
40
- ip_data[k] = data[j]
41
- else:
42
- for k in range(i, frame_number):
43
- ip_data[k] = last_value
44
- else:
45
- ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
46
- last_value = data[i]
47
-
48
- return ip_data[:,0], vuv_vector[:,0]
49
 
 
 
 
 
 
 
 
 
 
50
  def resize_f0(self,x, target_len):
51
  source = np.array(x)
52
  source[source<0.001] = np.nan
 
 
 
1
  import numpy as np
2
+ import pyworld
3
+
4
+ from modules.F0Predictor.F0Predictor import F0Predictor
5
+
6
 
7
  class HarvestF0Predictor(F0Predictor):
8
  def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
 
10
  self.f0_min = f0_min
11
  self.f0_max = f0_max
12
  self.sampling_rate = sampling_rate
13
+ self.name = "harvest"
14
 
15
  def interpolate_f0(self,f0):
16
  '''
17
  对F0进行插值处理
18
  '''
19
+ vuv_vector = np.zeros_like(f0, dtype=np.float32)
20
+ vuv_vector[f0 > 0.0] = 1.0
21
+ vuv_vector[f0 <= 0.0] = 0.0
22
 
23
+ nzindex = np.nonzero(f0)[0]
24
+ data = f0[nzindex]
25
+ nzindex = nzindex.astype(np.float32)
26
+ time_org = self.hop_length / self.sampling_rate * nzindex
27
+ time_frame = np.arange(f0.shape[0]) * self.hop_length / self.sampling_rate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
+ if data.shape[0] <= 0:
30
+ return np.zeros(f0.shape[0], dtype=np.float32),vuv_vector
31
+
32
+ if data.shape[0] == 1:
33
+ return np.ones(f0.shape[0], dtype=np.float32) * f0[0],vuv_vector
34
+
35
+ f0 = np.interp(time_frame, time_org, data, left=data[0], right=data[-1])
36
+
37
+ return f0,vuv_vector
38
  def resize_f0(self,x, target_len):
39
  source = np.array(x)
40
  source[source<0.001] = np.nan
modules/F0Predictor/PMF0Predictor.py CHANGED
@@ -1,6 +1,8 @@
1
- from modules.F0Predictor.F0Predictor import F0Predictor
2
- import parselmouth
3
  import numpy as np
 
 
 
 
4
 
5
  class PMF0Predictor(F0Predictor):
6
  def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
@@ -8,45 +10,32 @@ class PMF0Predictor(F0Predictor):
8
  self.f0_min = f0_min
9
  self.f0_max = f0_max
10
  self.sampling_rate = sampling_rate
11
-
12
 
13
  def interpolate_f0(self,f0):
14
  '''
15
  对F0进行插值处理
16
  '''
 
 
 
17
 
18
- data = np.reshape(f0, (f0.size, 1))
19
-
20
- vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
21
- vuv_vector[data > 0.0] = 1.0
22
- vuv_vector[data <= 0.0] = 0.0
23
-
24
- ip_data = data
25
-
26
- frame_number = data.size
27
- last_value = 0.0
28
- for i in range(frame_number):
29
- if data[i] <= 0.0:
30
- j = i + 1
31
- for j in range(i + 1, frame_number):
32
- if data[j] > 0.0:
33
- break
34
- if j < frame_number - 1:
35
- if last_value > 0.0:
36
- step = (data[j] - data[i - 1]) / float(j - i)
37
- for k in range(i, j):
38
- ip_data[k] = data[i - 1] + step * (k - i + 1)
39
- else:
40
- for k in range(i, j):
41
- ip_data[k] = data[j]
42
- else:
43
- for k in range(i, frame_number):
44
- ip_data[k] = last_value
45
- else:
46
- ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
47
- last_value = data[i]
48
 
49
- return ip_data[:,0], vuv_vector[:,0]
50
 
51
  def compute_f0(self,wav,p_len=None):
52
  x = wav
 
 
 
1
  import numpy as np
2
+ import parselmouth
3
+
4
+ from modules.F0Predictor.F0Predictor import F0Predictor
5
+
6
 
7
  class PMF0Predictor(F0Predictor):
8
  def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
 
10
  self.f0_min = f0_min
11
  self.f0_max = f0_max
12
  self.sampling_rate = sampling_rate
13
+ self.name = "pm"
14
 
15
  def interpolate_f0(self,f0):
16
  '''
17
  对F0进行插值处理
18
  '''
19
+ vuv_vector = np.zeros_like(f0, dtype=np.float32)
20
+ vuv_vector[f0 > 0.0] = 1.0
21
+ vuv_vector[f0 <= 0.0] = 0.0
22
 
23
+ nzindex = np.nonzero(f0)[0]
24
+ data = f0[nzindex]
25
+ nzindex = nzindex.astype(np.float32)
26
+ time_org = self.hop_length / self.sampling_rate * nzindex
27
+ time_frame = np.arange(f0.shape[0]) * self.hop_length / self.sampling_rate
28
+
29
+ if data.shape[0] <= 0:
30
+ return np.zeros(f0.shape[0], dtype=np.float32),vuv_vector
31
+
32
+ if data.shape[0] == 1:
33
+ return np.ones(f0.shape[0], dtype=np.float32) * f0[0],vuv_vector
34
+
35
+ f0 = np.interp(time_frame, time_org, data, left=data[0], right=data[-1])
36
+
37
+ return f0,vuv_vector
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
 
39
 
40
  def compute_f0(self,wav,p_len=None):
41
  x = wav
modules/F0Predictor/RMVPEF0Predictor.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Union
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn.functional as F
6
+
7
+ from modules.F0Predictor.F0Predictor import F0Predictor
8
+
9
+ from .rmvpe import RMVPE
10
+
11
+
12
+ class RMVPEF0Predictor(F0Predictor):
13
+ def __init__(self,hop_length=512,f0_min=50,f0_max=1100, dtype=torch.float32, device=None,sampling_rate=44100,threshold=0.05):
14
+ self.rmvpe = RMVPE(model_path="pretrain/rmvpe.pt",dtype=dtype,device=device)
15
+ self.hop_length = hop_length
16
+ self.f0_min = f0_min
17
+ self.f0_max = f0_max
18
+ if device is None:
19
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
20
+ else:
21
+ self.device = device
22
+ self.threshold = threshold
23
+ self.sampling_rate = sampling_rate
24
+ self.dtype = dtype
25
+ self.name = "rmvpe"
26
+
27
+ def repeat_expand(
28
+ self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
29
+ ):
30
+ ndim = content.ndim
31
+
32
+ if content.ndim == 1:
33
+ content = content[None, None]
34
+ elif content.ndim == 2:
35
+ content = content[None]
36
+
37
+ assert content.ndim == 3
38
+
39
+ is_np = isinstance(content, np.ndarray)
40
+ if is_np:
41
+ content = torch.from_numpy(content)
42
+
43
+ results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
44
+
45
+ if is_np:
46
+ results = results.numpy()
47
+
48
+ if ndim == 1:
49
+ return results[0, 0]
50
+ elif ndim == 2:
51
+ return results[0]
52
+
53
+ def post_process(self, x, sampling_rate, f0, pad_to):
54
+ if isinstance(f0, np.ndarray):
55
+ f0 = torch.from_numpy(f0).float().to(x.device)
56
+
57
+ if pad_to is None:
58
+ return f0
59
+
60
+ f0 = self.repeat_expand(f0, pad_to)
61
+
62
+ vuv_vector = torch.zeros_like(f0)
63
+ vuv_vector[f0 > 0.0] = 1.0
64
+ vuv_vector[f0 <= 0.0] = 0.0
65
+
66
+ # 去掉0频率, 并线性插值
67
+ nzindex = torch.nonzero(f0).squeeze()
68
+ f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
69
+ time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
70
+ time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
71
+
72
+ vuv_vector = F.interpolate(vuv_vector[None,None,:],size=pad_to)[0][0]
73
+
74
+ if f0.shape[0] <= 0:
75
+ return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(),vuv_vector.cpu().numpy()
76
+ if f0.shape[0] == 1:
77
+ return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0]).cpu().numpy() ,vuv_vector.cpu().numpy()
78
+
79
+ # 大概可以用 torch 重写?
80
+ f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
81
+ #vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
82
+
83
+ return f0,vuv_vector.cpu().numpy()
84
+
85
+ def compute_f0(self,wav,p_len=None):
86
+ x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
87
+ if p_len is None:
88
+ p_len = x.shape[0]//self.hop_length
89
+ else:
90
+ assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
91
+ f0 = self.rmvpe.infer_from_audio(x,self.sampling_rate,self.threshold)
92
+ if torch.all(f0 == 0):
93
+ rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
94
+ return rtn,rtn
95
+ return self.post_process(x,self.sampling_rate,f0,p_len)[0]
96
+
97
+ def compute_f0_uv(self,wav,p_len=None):
98
+ x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
99
+ if p_len is None:
100
+ p_len = x.shape[0]//self.hop_length
101
+ else:
102
+ assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
103
+ f0 = self.rmvpe.infer_from_audio(x,self.sampling_rate,self.threshold)
104
+ if torch.all(f0 == 0):
105
+ rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
106
+ return rtn,rtn
107
+ return self.post_process(x,self.sampling_rate,f0,p_len)
modules/F0Predictor/crepe.py CHANGED
@@ -1,14 +1,14 @@
1
- from typing import Optional,Union
 
2
  try:
3
  from typing import Literal
4
- except Exception as e:
5
  from typing_extensions import Literal
6
  import numpy as np
7
  import torch
8
  import torchcrepe
9
  from torch import nn
10
  from torch.nn import functional as F
11
- import scipy
12
 
13
  #from:https://github.com/fishaudio/fish-diffusion
14
 
@@ -97,19 +97,19 @@ class BasePitchExtractor:
97
  f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
98
  time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
99
  time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
 
 
100
 
101
  if f0.shape[0] <= 0:
102
- return torch.zeros(pad_to, dtype=torch.float, device=x.device),torch.zeros(pad_to, dtype=torch.float, device=x.device)
103
-
104
  if f0.shape[0] == 1:
105
- return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],torch.ones(pad_to, dtype=torch.float, device=x.device)
106
 
107
  # 大概可以用 torch 重写?
108
  f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
109
- vuv_vector = vuv_vector.cpu().numpy()
110
- vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
111
 
112
- return f0,vuv_vector
113
 
114
 
115
  class MaskedAvgPool1d(nn.Module):
@@ -323,7 +323,7 @@ class CrepePitchExtractor(BasePitchExtractor):
323
  else:
324
  pd = torchcrepe.filter.median(pd, 3)
325
 
326
- pd = torchcrepe.threshold.Silence(-60.0)(pd, x, sampling_rate, 512)
327
  f0 = torchcrepe.threshold.At(self.threshold)(f0, pd)
328
 
329
  if self.use_fast_filters:
@@ -334,7 +334,7 @@ class CrepePitchExtractor(BasePitchExtractor):
334
  f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)[0]
335
 
336
  if torch.all(f0 == 0):
337
- rtn = f0.cpu().numpy() if pad_to==None else np.zeros(pad_to)
338
  return rtn,rtn
339
 
340
  return self.post_process(x, sampling_rate, f0, pad_to)
 
1
+ from typing import Optional, Union
2
+
3
  try:
4
  from typing import Literal
5
+ except Exception:
6
  from typing_extensions import Literal
7
  import numpy as np
8
  import torch
9
  import torchcrepe
10
  from torch import nn
11
  from torch.nn import functional as F
 
12
 
13
  #from:https://github.com/fishaudio/fish-diffusion
14
 
 
97
  f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
98
  time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
99
  time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
100
+
101
+ vuv_vector = F.interpolate(vuv_vector[None,None,:],size=pad_to)[0][0]
102
 
103
  if f0.shape[0] <= 0:
104
+ return torch.zeros(pad_to, dtype=torch.float, device=x.device),vuv_vector.cpu().numpy()
 
105
  if f0.shape[0] == 1:
106
+ return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],vuv_vector.cpu().numpy()
107
 
108
  # 大概可以用 torch 重写?
109
  f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
110
+ #vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
 
111
 
112
+ return f0,vuv_vector.cpu().numpy()
113
 
114
 
115
  class MaskedAvgPool1d(nn.Module):
 
323
  else:
324
  pd = torchcrepe.filter.median(pd, 3)
325
 
326
+ pd = torchcrepe.threshold.Silence(-60.0)(pd, x, sampling_rate, self.hop_length)
327
  f0 = torchcrepe.threshold.At(self.threshold)(f0, pd)
328
 
329
  if self.use_fast_filters:
 
334
  f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)[0]
335
 
336
  if torch.all(f0 == 0):
337
+ rtn = f0.cpu().numpy() if pad_to is None else np.zeros(pad_to)
338
  return rtn,rtn
339
 
340
  return self.post_process(x, sampling_rate, f0, pad_to)
modules/F0Predictor/fcpe/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .model import FCPEInfer # noqa: F401
2
+ from .nvSTFT import STFT # noqa: F401
3
+ from .pcmer import PCmer # noqa: F401
modules/F0Predictor/fcpe/model.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from torch.nn.utils import weight_norm
6
+ from torchaudio.transforms import Resample
7
+
8
+ from .nvSTFT import STFT
9
+ from .pcmer import PCmer
10
+
11
+
12
+ def l2_regularization(model, l2_alpha):
13
+ l2_loss = []
14
+ for module in model.modules():
15
+ if type(module) is nn.Conv2d:
16
+ l2_loss.append((module.weight ** 2).sum() / 2.0)
17
+ return l2_alpha * sum(l2_loss)
18
+
19
+
20
+ class FCPE(nn.Module):
21
+ def __init__(
22
+ self,
23
+ input_channel=128,
24
+ out_dims=360,
25
+ n_layers=12,
26
+ n_chans=512,
27
+ use_siren=False,
28
+ use_full=False,
29
+ loss_mse_scale=10,
30
+ loss_l2_regularization=False,
31
+ loss_l2_regularization_scale=1,
32
+ loss_grad1_mse=False,
33
+ loss_grad1_mse_scale=1,
34
+ f0_max=1975.5,
35
+ f0_min=32.70,
36
+ confidence=False,
37
+ threshold=0.05,
38
+ use_input_conv=True
39
+ ):
40
+ super().__init__()
41
+ if use_siren is True:
42
+ raise ValueError("Siren is not supported yet.")
43
+ if use_full is True:
44
+ raise ValueError("Full model is not supported yet.")
45
+
46
+ self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
47
+ self.loss_l2_regularization = loss_l2_regularization if (loss_l2_regularization is not None) else False
48
+ self.loss_l2_regularization_scale = loss_l2_regularization_scale if (loss_l2_regularization_scale
49
+ is not None) else 1
50
+ self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
51
+ self.loss_grad1_mse_scale = loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1
52
+ self.f0_max = f0_max if (f0_max is not None) else 1975.5
53
+ self.f0_min = f0_min if (f0_min is not None) else 32.70
54
+ self.confidence = confidence if (confidence is not None) else False
55
+ self.threshold = threshold if (threshold is not None) else 0.05
56
+ self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
57
+
58
+ self.cent_table_b = torch.Tensor(
59
+ np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0],
60
+ out_dims))
61
+ self.register_buffer("cent_table", self.cent_table_b)
62
+
63
+ # conv in stack
64
+ _leaky = nn.LeakyReLU()
65
+ self.stack = nn.Sequential(
66
+ nn.Conv1d(input_channel, n_chans, 3, 1, 1),
67
+ nn.GroupNorm(4, n_chans),
68
+ _leaky,
69
+ nn.Conv1d(n_chans, n_chans, 3, 1, 1))
70
+
71
+ # transformer
72
+ self.decoder = PCmer(
73
+ num_layers=n_layers,
74
+ num_heads=8,
75
+ dim_model=n_chans,
76
+ dim_keys=n_chans,
77
+ dim_values=n_chans,
78
+ residual_dropout=0.1,
79
+ attention_dropout=0.1)
80
+ self.norm = nn.LayerNorm(n_chans)
81
+
82
+ # out
83
+ self.n_out = out_dims
84
+ self.dense_out = weight_norm(
85
+ nn.Linear(n_chans, self.n_out))
86
+
87
+ def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder = "local_argmax"):
88
+ """
89
+ input:
90
+ B x n_frames x n_unit
91
+ return:
92
+ dict of B x n_frames x feat
93
+ """
94
+ if cdecoder == "argmax":
95
+ self.cdecoder = self.cents_decoder
96
+ elif cdecoder == "local_argmax":
97
+ self.cdecoder = self.cents_local_decoder
98
+ if self.use_input_conv:
99
+ x = self.stack(mel.transpose(1, 2)).transpose(1, 2)
100
+ else:
101
+ x = mel
102
+ x = self.decoder(x)
103
+ x = self.norm(x)
104
+ x = self.dense_out(x) # [B,N,D]
105
+ x = torch.sigmoid(x)
106
+ if not infer:
107
+ gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1]
108
+ gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim]
109
+ loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, gt_cent_f0) # bce loss
110
+ # l2 regularization
111
+ if self.loss_l2_regularization:
112
+ loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale)
113
+ x = loss_all
114
+ if infer:
115
+ x = self.cdecoder(x)
116
+ x = self.cent_to_f0(x)
117
+ if not return_hz_f0:
118
+ x = (1 + x / 700).log()
119
+ return x
120
+
121
+ def cents_decoder(self, y, mask=True):
122
+ B, N, _ = y.size()
123
+ ci = self.cent_table[None, None, :].expand(B, N, -1)
124
+ rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True) # cents: [B,N,1]
125
+ if mask:
126
+ confident = torch.max(y, dim=-1, keepdim=True)[0]
127
+ confident_mask = torch.ones_like(confident)
128
+ confident_mask[confident <= self.threshold] = float("-INF")
129
+ rtn = rtn * confident_mask
130
+ if self.confidence:
131
+ return rtn, confident
132
+ else:
133
+ return rtn
134
+
135
+ def cents_local_decoder(self, y, mask=True):
136
+ B, N, _ = y.size()
137
+ ci = self.cent_table[None, None, :].expand(B, N, -1)
138
+ confident, max_index = torch.max(y, dim=-1, keepdim=True)
139
+ local_argmax_index = torch.arange(0,9).to(max_index.device) + (max_index - 4)
140
+ local_argmax_index[local_argmax_index<0] = 0
141
+ local_argmax_index[local_argmax_index>=self.n_out] = self.n_out - 1
142
+ ci_l = torch.gather(ci,-1,local_argmax_index)
143
+ y_l = torch.gather(y,-1,local_argmax_index)
144
+ rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True) # cents: [B,N,1]
145
+ if mask:
146
+ confident_mask = torch.ones_like(confident)
147
+ confident_mask[confident <= self.threshold] = float("-INF")
148
+ rtn = rtn * confident_mask
149
+ if self.confidence:
150
+ return rtn, confident
151
+ else:
152
+ return rtn
153
+
154
+ def cent_to_f0(self, cent):
155
+ return 10. * 2 ** (cent / 1200.)
156
+
157
+ def f0_to_cent(self, f0):
158
+ return 1200. * torch.log2(f0 / 10.)
159
+
160
+ def gaussian_blurred_cent(self, cents): # cents: [B,N,1]
161
+ mask = (cents > 0.1) & (cents < (1200. * np.log2(self.f0_max / 10.)))
162
+ B, N, _ = cents.size()
163
+ ci = self.cent_table[None, None, :].expand(B, N, -1)
164
+ return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()
165
+
166
+
167
+ class FCPEInfer:
168
+ def __init__(self, model_path, device=None, dtype=torch.float32):
169
+ if device is None:
170
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
171
+ self.device = device
172
+ ckpt = torch.load(model_path, map_location=torch.device(self.device))
173
+ self.args = DotDict(ckpt["config"])
174
+ self.dtype = dtype
175
+ model = FCPE(
176
+ input_channel=self.args.model.input_channel,
177
+ out_dims=self.args.model.out_dims,
178
+ n_layers=self.args.model.n_layers,
179
+ n_chans=self.args.model.n_chans,
180
+ use_siren=self.args.model.use_siren,
181
+ use_full=self.args.model.use_full,
182
+ loss_mse_scale=self.args.loss.loss_mse_scale,
183
+ loss_l2_regularization=self.args.loss.loss_l2_regularization,
184
+ loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale,
185
+ loss_grad1_mse=self.args.loss.loss_grad1_mse,
186
+ loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale,
187
+ f0_max=self.args.model.f0_max,
188
+ f0_min=self.args.model.f0_min,
189
+ confidence=self.args.model.confidence,
190
+ )
191
+ model.to(self.device).to(self.dtype)
192
+ model.load_state_dict(ckpt['model'])
193
+ model.eval()
194
+ self.model = model
195
+ self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device)
196
+
197
+ @torch.no_grad()
198
+ def __call__(self, audio, sr, threshold=0.05):
199
+ self.model.threshold = threshold
200
+ audio = audio[None,:]
201
+ mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
202
+ f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
203
+ return f0
204
+
205
+
206
+ class Wav2Mel:
207
+
208
+ def __init__(self, args, device=None, dtype=torch.float32):
209
+ # self.args = args
210
+ self.sampling_rate = args.mel.sampling_rate
211
+ self.hop_size = args.mel.hop_size
212
+ if device is None:
213
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
214
+ self.device = device
215
+ self.dtype = dtype
216
+ self.stft = STFT(
217
+ args.mel.sampling_rate,
218
+ args.mel.num_mels,
219
+ args.mel.n_fft,
220
+ args.mel.win_size,
221
+ args.mel.hop_size,
222
+ args.mel.fmin,
223
+ args.mel.fmax
224
+ )
225
+ self.resample_kernel = {}
226
+
227
+ def extract_nvstft(self, audio, keyshift=0, train=False):
228
+ mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2) # B, n_frames, bins
229
+ return mel
230
+
231
+ def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
232
+ audio = audio.to(self.dtype).to(self.device)
233
+ # resample
234
+ if sample_rate == self.sampling_rate:
235
+ audio_res = audio
236
+ else:
237
+ key_str = str(sample_rate)
238
+ if key_str not in self.resample_kernel:
239
+ self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate, lowpass_filter_width=128)
240
+ self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device)
241
+ audio_res = self.resample_kernel[key_str](audio)
242
+
243
+ # extract
244
+ mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) # B, n_frames, bins
245
+ n_frames = int(audio.shape[1] // self.hop_size) + 1
246
+ if n_frames > int(mel.shape[1]):
247
+ mel = torch.cat((mel, mel[:, -1:, :]), 1)
248
+ if n_frames < int(mel.shape[1]):
249
+ mel = mel[:, :n_frames, :]
250
+ return mel
251
+
252
+ def __call__(self, audio, sample_rate, keyshift=0, train=False):
253
+ return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)
254
+
255
+
256
+ class DotDict(dict):
257
+ def __getattr__(*args):
258
+ val = dict.get(*args)
259
+ return DotDict(val) if type(val) is dict else val
260
+
261
+ __setattr__ = dict.__setitem__
262
+ __delattr__ = dict.__delitem__
modules/F0Predictor/fcpe/nvSTFT.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import librosa
4
+ import numpy as np
5
+ import soundfile as sf
6
+ import torch
7
+ import torch.nn.functional as F
8
+ import torch.utils.data
9
+ from librosa.filters import mel as librosa_mel_fn
10
+
11
+ os.environ["LRU_CACHE_CAPACITY"] = "3"
12
+
13
+ def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
14
+ sampling_rate = None
15
+ try:
16
+ data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
17
+ except Exception as ex:
18
+ print(f"'{full_path}' failed to load.\nException:")
19
+ print(ex)
20
+ if return_empty_on_exception:
21
+ return [], sampling_rate or target_sr or 48000
22
+ else:
23
+ raise Exception(ex)
24
+
25
+ if len(data.shape) > 1:
26
+ data = data[:, 0]
27
+ assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
28
+
29
+ if np.issubdtype(data.dtype, np.integer): # if audio data is type int
30
+ max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
31
+ else: # if audio data is type fp32
32
+ max_mag = max(np.amax(data), -np.amin(data))
33
+ max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
34
+
35
+ data = torch.FloatTensor(data.astype(np.float32))/max_mag
36
+
37
+ if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
38
+ return [], sampling_rate or target_sr or 48000
39
+ if target_sr is not None and sampling_rate != target_sr:
40
+ data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
41
+ sampling_rate = target_sr
42
+
43
+ return data, sampling_rate
44
+
45
+ def dynamic_range_compression(x, C=1, clip_val=1e-5):
46
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
47
+
48
+ def dynamic_range_decompression(x, C=1):
49
+ return np.exp(x) / C
50
+
51
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
52
+ return torch.log(torch.clamp(x, min=clip_val) * C)
53
+
54
+ def dynamic_range_decompression_torch(x, C=1):
55
+ return torch.exp(x) / C
56
+
57
+ class STFT():
58
+ def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
59
+ self.target_sr = sr
60
+
61
+ self.n_mels = n_mels
62
+ self.n_fft = n_fft
63
+ self.win_size = win_size
64
+ self.hop_length = hop_length
65
+ self.fmin = fmin
66
+ self.fmax = fmax
67
+ self.clip_val = clip_val
68
+ self.mel_basis = {}
69
+ self.hann_window = {}
70
+
71
+ def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
72
+ sampling_rate = self.target_sr
73
+ n_mels = self.n_mels
74
+ n_fft = self.n_fft
75
+ win_size = self.win_size
76
+ hop_length = self.hop_length
77
+ fmin = self.fmin
78
+ fmax = self.fmax
79
+ clip_val = self.clip_val
80
+
81
+ factor = 2 ** (keyshift / 12)
82
+ n_fft_new = int(np.round(n_fft * factor))
83
+ win_size_new = int(np.round(win_size * factor))
84
+ hop_length_new = int(np.round(hop_length * speed))
85
+ if not train:
86
+ mel_basis = self.mel_basis
87
+ hann_window = self.hann_window
88
+ else:
89
+ mel_basis = {}
90
+ hann_window = {}
91
+
92
+ if torch.min(y) < -1.:
93
+ print('min value is ', torch.min(y))
94
+ if torch.max(y) > 1.:
95
+ print('max value is ', torch.max(y))
96
+
97
+ mel_basis_key = str(fmax)+'_'+str(y.device)
98
+ if mel_basis_key not in mel_basis:
99
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
100
+ mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
101
+
102
+ keyshift_key = str(keyshift)+'_'+str(y.device)
103
+ if keyshift_key not in hann_window:
104
+ hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
105
+
106
+ pad_left = (win_size_new - hop_length_new) //2
107
+ pad_right = max((win_size_new- hop_length_new + 1) //2, win_size_new - y.size(-1) - pad_left)
108
+ if pad_right < y.size(-1):
109
+ mode = 'reflect'
110
+ else:
111
+ mode = 'constant'
112
+ y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode = mode)
113
+ y = y.squeeze(1)
114
+
115
+ spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key],
116
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
117
+ spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
118
+ if keyshift != 0:
119
+ size = n_fft // 2 + 1
120
+ resize = spec.size(1)
121
+ if resize < size:
122
+ spec = F.pad(spec, (0, 0, 0, size-resize))
123
+ spec = spec[:, :size, :] * win_size / win_size_new
124
+ spec = torch.matmul(mel_basis[mel_basis_key], spec)
125
+ spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
126
+ return spec
127
+
128
+ def __call__(self, audiopath):
129
+ audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
130
+ spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
131
+ return spect
132
+
133
+ stft = STFT()
modules/F0Predictor/fcpe/pcmer.py ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from functools import partial
3
+
4
+ import torch
5
+ import torch.nn.functional as F
6
+ from einops import rearrange, repeat
7
+ from local_attention import LocalAttention
8
+ from torch import nn
9
+
10
+ #import fast_transformers.causal_product.causal_product_cuda
11
+
12
+ def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None):
13
+ b, h, *_ = data.shape
14
+ # (batch size, head, length, model_dim)
15
+
16
+ # normalize model dim
17
+ data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.
18
+
19
+ # what is ration?, projection_matrix.shape[0] --> 266
20
+
21
+ ratio = (projection_matrix.shape[0] ** -0.5)
22
+
23
+ projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
24
+ projection = projection.type_as(data)
25
+
26
+ #data_dash = w^T x
27
+ data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)
28
+
29
+
30
+ # diag_data = D**2
31
+ diag_data = data ** 2
32
+ diag_data = torch.sum(diag_data, dim=-1)
33
+ diag_data = (diag_data / 2.0) * (data_normalizer ** 2)
34
+ diag_data = diag_data.unsqueeze(dim=-1)
35
+
36
+ #print ()
37
+ if is_query:
38
+ data_dash = ratio * (
39
+ torch.exp(data_dash - diag_data -
40
+ torch.max(data_dash, dim=-1, keepdim=True).values) + eps)
41
+ else:
42
+ data_dash = ratio * (
43
+ torch.exp(data_dash - diag_data + eps))#- torch.max(data_dash)) + eps)
44
+
45
+ return data_dash.type_as(data)
46
+
47
+ def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None):
48
+ unstructured_block = torch.randn((cols, cols), device = device)
49
+ q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced')
50
+ q, r = map(lambda t: t.to(device), (q, r))
51
+
52
+ # proposed by @Parskatt
53
+ # to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
54
+ if qr_uniform_q:
55
+ d = torch.diag(r, 0)
56
+ q *= d.sign()
57
+ return q.t()
58
+ def exists(val):
59
+ return val is not None
60
+
61
+ def empty(tensor):
62
+ return tensor.numel() == 0
63
+
64
+ def default(val, d):
65
+ return val if exists(val) else d
66
+
67
+ def cast_tuple(val):
68
+ return (val,) if not isinstance(val, tuple) else val
69
+
70
+ class PCmer(nn.Module):
71
+ """The encoder that is used in the Transformer model."""
72
+
73
+ def __init__(self,
74
+ num_layers,
75
+ num_heads,
76
+ dim_model,
77
+ dim_keys,
78
+ dim_values,
79
+ residual_dropout,
80
+ attention_dropout):
81
+ super().__init__()
82
+ self.num_layers = num_layers
83
+ self.num_heads = num_heads
84
+ self.dim_model = dim_model
85
+ self.dim_values = dim_values
86
+ self.dim_keys = dim_keys
87
+ self.residual_dropout = residual_dropout
88
+ self.attention_dropout = attention_dropout
89
+
90
+ self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
91
+
92
+ # METHODS ########################################################################################################
93
+
94
+ def forward(self, phone, mask=None):
95
+
96
+ # apply all layers to the input
97
+ for (i, layer) in enumerate(self._layers):
98
+ phone = layer(phone, mask)
99
+ # provide the final sequence
100
+ return phone
101
+
102
+
103
+ # ==================================================================================================================== #
104
+ # CLASS _ E N C O D E R L A Y E R #
105
+ # ==================================================================================================================== #
106
+
107
+
108
+ class _EncoderLayer(nn.Module):
109
+ """One layer of the encoder.
110
+
111
+ Attributes:
112
+ attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
113
+ feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
114
+ """
115
+
116
+ def __init__(self, parent: PCmer):
117
+ """Creates a new instance of ``_EncoderLayer``.
118
+
119
+ Args:
120
+ parent (Encoder): The encoder that the layers is created for.
121
+ """
122
+ super().__init__()
123
+
124
+
125
+ self.conformer = ConformerConvModule(parent.dim_model)
126
+ self.norm = nn.LayerNorm(parent.dim_model)
127
+ self.dropout = nn.Dropout(parent.residual_dropout)
128
+
129
+ # selfatt -> fastatt: performer!
130
+ self.attn = SelfAttention(dim = parent.dim_model,
131
+ heads = parent.num_heads,
132
+ causal = False)
133
+
134
+ # METHODS ########################################################################################################
135
+
136
+ def forward(self, phone, mask=None):
137
+
138
+ # compute attention sub-layer
139
+ phone = phone + (self.attn(self.norm(phone), mask=mask))
140
+
141
+ phone = phone + (self.conformer(phone))
142
+
143
+ return phone
144
+
145
+ def calc_same_padding(kernel_size):
146
+ pad = kernel_size // 2
147
+ return (pad, pad - (kernel_size + 1) % 2)
148
+
149
+ # helper classes
150
+
151
+ class Swish(nn.Module):
152
+ def forward(self, x):
153
+ return x * x.sigmoid()
154
+
155
+ class Transpose(nn.Module):
156
+ def __init__(self, dims):
157
+ super().__init__()
158
+ assert len(dims) == 2, 'dims must be a tuple of two dimensions'
159
+ self.dims = dims
160
+
161
+ def forward(self, x):
162
+ return x.transpose(*self.dims)
163
+
164
+ class GLU(nn.Module):
165
+ def __init__(self, dim):
166
+ super().__init__()
167
+ self.dim = dim
168
+
169
+ def forward(self, x):
170
+ out, gate = x.chunk(2, dim=self.dim)
171
+ return out * gate.sigmoid()
172
+
173
+ class DepthWiseConv1d(nn.Module):
174
+ def __init__(self, chan_in, chan_out, kernel_size, padding):
175
+ super().__init__()
176
+ self.padding = padding
177
+ self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in)
178
+
179
+ def forward(self, x):
180
+ x = F.pad(x, self.padding)
181
+ return self.conv(x)
182
+
183
+ class ConformerConvModule(nn.Module):
184
+ def __init__(
185
+ self,
186
+ dim,
187
+ causal = False,
188
+ expansion_factor = 2,
189
+ kernel_size = 31,
190
+ dropout = 0.):
191
+ super().__init__()
192
+
193
+ inner_dim = dim * expansion_factor
194
+ padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
195
+
196
+ self.net = nn.Sequential(
197
+ nn.LayerNorm(dim),
198
+ Transpose((1, 2)),
199
+ nn.Conv1d(dim, inner_dim * 2, 1),
200
+ GLU(dim=1),
201
+ DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding),
202
+ #nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
203
+ Swish(),
204
+ nn.Conv1d(inner_dim, dim, 1),
205
+ Transpose((1, 2)),
206
+ nn.Dropout(dropout)
207
+ )
208
+
209
+ def forward(self, x):
210
+ return self.net(x)
211
+
212
+ def linear_attention(q, k, v):
213
+ if v is None:
214
+ #print (k.size(), q.size())
215
+ out = torch.einsum('...ed,...nd->...ne', k, q)
216
+ return out
217
+
218
+ else:
219
+ k_cumsum = k.sum(dim = -2)
220
+ #k_cumsum = k.sum(dim = -2)
221
+ D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8)
222
+
223
+ context = torch.einsum('...nd,...ne->...de', k, v)
224
+ #print ("TRUEEE: ", context.size(), q.size(), D_inv.size())
225
+ out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv)
226
+ return out
227
+
228
+ def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None):
229
+ nb_full_blocks = int(nb_rows / nb_columns)
230
+ #print (nb_full_blocks)
231
+ block_list = []
232
+
233
+ for _ in range(nb_full_blocks):
234
+ q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
235
+ block_list.append(q)
236
+ # block_list[n] is a orthogonal matrix ... (model_dim * model_dim)
237
+ #print (block_list[0].size(), torch.einsum('...nd,...nd->...n', block_list[0], torch.roll(block_list[0],1,1)))
238
+ #print (nb_rows, nb_full_blocks, nb_columns)
239
+ remaining_rows = nb_rows - nb_full_blocks * nb_columns
240
+ #print (remaining_rows)
241
+ if remaining_rows > 0:
242
+ q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
243
+ #print (q[:remaining_rows].size())
244
+ block_list.append(q[:remaining_rows])
245
+
246
+ final_matrix = torch.cat(block_list)
247
+
248
+ if scaling == 0:
249
+ multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1)
250
+ elif scaling == 1:
251
+ multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device)
252
+ else:
253
+ raise ValueError(f'Invalid scaling {scaling}')
254
+
255
+ return torch.diag(multiplier) @ final_matrix
256
+
257
+ class FastAttention(nn.Module):
258
+ def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False):
259
+ super().__init__()
260
+ nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
261
+
262
+ self.dim_heads = dim_heads
263
+ self.nb_features = nb_features
264
+ self.ortho_scaling = ortho_scaling
265
+
266
+ self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q)
267
+ projection_matrix = self.create_projection()
268
+ self.register_buffer('projection_matrix', projection_matrix)
269
+
270
+ self.generalized_attention = generalized_attention
271
+ self.kernel_fn = kernel_fn
272
+
273
+ # if this is turned on, no projection will be used
274
+ # queries and keys will be softmax-ed as in the original efficient attention paper
275
+ self.no_projection = no_projection
276
+
277
+ self.causal = causal
278
+
279
+ @torch.no_grad()
280
+ def redraw_projection_matrix(self):
281
+ projections = self.create_projection()
282
+ self.projection_matrix.copy_(projections)
283
+ del projections
284
+
285
+ def forward(self, q, k, v):
286
+ device = q.device
287
+
288
+ if self.no_projection:
289
+ q = q.softmax(dim = -1)
290
+ k = torch.exp(k) if self.causal else k.softmax(dim = -2)
291
+ else:
292
+ create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device)
293
+
294
+ q = create_kernel(q, is_query = True)
295
+ k = create_kernel(k, is_query = False)
296
+
297
+ attn_fn = linear_attention if not self.causal else self.causal_linear_fn
298
+ if v is None:
299
+ out = attn_fn(q, k, None)
300
+ return out
301
+ else:
302
+ out = attn_fn(q, k, v)
303
+ return out
304
+ class SelfAttention(nn.Module):
305
+ def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False):
306
+ super().__init__()
307
+ assert dim % heads == 0, 'dimension must be divisible by number of heads'
308
+ dim_head = default(dim_head, dim // heads)
309
+ inner_dim = dim_head * heads
310
+ self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection)
311
+
312
+ self.heads = heads
313
+ self.global_heads = heads - local_heads
314
+ self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None
315
+
316
+ #print (heads, nb_features, dim_head)
317
+ #name_embedding = torch.zeros(110, heads, dim_head, dim_head)
318
+ #self.name_embedding = nn.Parameter(name_embedding, requires_grad=True)
319
+
320
+
321
+ self.to_q = nn.Linear(dim, inner_dim)
322
+ self.to_k = nn.Linear(dim, inner_dim)
323
+ self.to_v = nn.Linear(dim, inner_dim)
324
+ self.to_out = nn.Linear(inner_dim, dim)
325
+ self.dropout = nn.Dropout(dropout)
326
+
327
+ @torch.no_grad()
328
+ def redraw_projection_matrix(self):
329
+ self.fast_attention.redraw_projection_matrix()
330
+ #torch.nn.init.zeros_(self.name_embedding)
331
+ #print (torch.sum(self.name_embedding))
332
+ def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs):
333
+ _, _, _, h, gh = *x.shape, self.heads, self.global_heads
334
+
335
+ cross_attend = exists(context)
336
+
337
+ context = default(context, x)
338
+ context_mask = default(context_mask, mask) if not cross_attend else context_mask
339
+ #print (torch.sum(self.name_embedding))
340
+ q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
341
+
342
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
343
+ (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
344
+
345
+ attn_outs = []
346
+ #print (name)
347
+ #print (self.name_embedding[name].size())
348
+ if not empty(q):
349
+ if exists(context_mask):
350
+ global_mask = context_mask[:, None, :, None]
351
+ v.masked_fill_(~global_mask, 0.)
352
+ if cross_attend:
353
+ pass
354
+ #print (torch.sum(self.name_embedding))
355
+ #out = self.fast_attention(q,self.name_embedding[name],None)
356
+ #print (torch.sum(self.name_embedding[...,-1:]))
357
+ else:
358
+ out = self.fast_attention(q, k, v)
359
+ attn_outs.append(out)
360
+
361
+ if not empty(lq):
362
+ assert not cross_attend, 'local attention is not compatible with cross attention'
363
+ out = self.local_attn(lq, lk, lv, input_mask = mask)
364
+ attn_outs.append(out)
365
+
366
+ out = torch.cat(attn_outs, dim = 1)
367
+ out = rearrange(out, 'b h n d -> b n (h d)')
368
+ out = self.to_out(out)
369
+ return self.dropout(out)
modules/F0Predictor/rmvpe/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from .constants import * # noqa: F403
2
+ from .inference import RMVPE # noqa: F401
3
+ from .model import E2E, E2E0 # noqa: F401
4
+ from .spec import MelSpectrogram # noqa: F401
5
+ from .utils import ( # noqa: F401
6
+ cycle,
7
+ summary,
8
+ to_local_average_cents,
9
+ to_viterbi_cents,
10
+ )
modules/F0Predictor/rmvpe/constants.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ SAMPLE_RATE = 16000
2
+
3
+ N_CLASS = 360
4
+
5
+ N_MELS = 128
6
+ MEL_FMIN = 30
7
+ MEL_FMAX = SAMPLE_RATE // 2
8
+ WINDOW_LENGTH = 1024
9
+ CONST = 1997.3794084376191
modules/F0Predictor/rmvpe/deepunet.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from .constants import N_MELS
5
+
6
+
7
+ class ConvBlockRes(nn.Module):
8
+ def __init__(self, in_channels, out_channels, momentum=0.01):
9
+ super(ConvBlockRes, self).__init__()
10
+ self.conv = nn.Sequential(
11
+ nn.Conv2d(in_channels=in_channels,
12
+ out_channels=out_channels,
13
+ kernel_size=(3, 3),
14
+ stride=(1, 1),
15
+ padding=(1, 1),
16
+ bias=False),
17
+ nn.BatchNorm2d(out_channels, momentum=momentum),
18
+ nn.ReLU(),
19
+
20
+ nn.Conv2d(in_channels=out_channels,
21
+ out_channels=out_channels,
22
+ kernel_size=(3, 3),
23
+ stride=(1, 1),
24
+ padding=(1, 1),
25
+ bias=False),
26
+ nn.BatchNorm2d(out_channels, momentum=momentum),
27
+ nn.ReLU(),
28
+ )
29
+ if in_channels != out_channels:
30
+ self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
31
+ self.is_shortcut = True
32
+ else:
33
+ self.is_shortcut = False
34
+
35
+ def forward(self, x):
36
+ if self.is_shortcut:
37
+ return self.conv(x) + self.shortcut(x)
38
+ else:
39
+ return self.conv(x) + x
40
+
41
+
42
+ class ResEncoderBlock(nn.Module):
43
+ def __init__(self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01):
44
+ super(ResEncoderBlock, self).__init__()
45
+ self.n_blocks = n_blocks
46
+ self.conv = nn.ModuleList()
47
+ self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
48
+ for i in range(n_blocks - 1):
49
+ self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
50
+ self.kernel_size = kernel_size
51
+ if self.kernel_size is not None:
52
+ self.pool = nn.AvgPool2d(kernel_size=kernel_size)
53
+
54
+ def forward(self, x):
55
+ for i in range(self.n_blocks):
56
+ x = self.conv[i](x)
57
+ if self.kernel_size is not None:
58
+ return x, self.pool(x)
59
+ else:
60
+ return x
61
+
62
+
63
+ class ResDecoderBlock(nn.Module):
64
+ def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
65
+ super(ResDecoderBlock, self).__init__()
66
+ out_padding = (0, 1) if stride == (1, 2) else (1, 1)
67
+ self.n_blocks = n_blocks
68
+ self.conv1 = nn.Sequential(
69
+ nn.ConvTranspose2d(in_channels=in_channels,
70
+ out_channels=out_channels,
71
+ kernel_size=(3, 3),
72
+ stride=stride,
73
+ padding=(1, 1),
74
+ output_padding=out_padding,
75
+ bias=False),
76
+ nn.BatchNorm2d(out_channels, momentum=momentum),
77
+ nn.ReLU(),
78
+ )
79
+ self.conv2 = nn.ModuleList()
80
+ self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
81
+ for i in range(n_blocks-1):
82
+ self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
83
+
84
+ def forward(self, x, concat_tensor):
85
+ x = self.conv1(x)
86
+ x = torch.cat((x, concat_tensor), dim=1)
87
+ for i in range(self.n_blocks):
88
+ x = self.conv2[i](x)
89
+ return x
90
+
91
+
92
+ class Encoder(nn.Module):
93
+ def __init__(self, in_channels, in_size, n_encoders, kernel_size, n_blocks, out_channels=16, momentum=0.01):
94
+ super(Encoder, self).__init__()
95
+ self.n_encoders = n_encoders
96
+ self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
97
+ self.layers = nn.ModuleList()
98
+ self.latent_channels = []
99
+ for i in range(self.n_encoders):
100
+ self.layers.append(ResEncoderBlock(in_channels, out_channels, kernel_size, n_blocks, momentum=momentum))
101
+ self.latent_channels.append([out_channels, in_size])
102
+ in_channels = out_channels
103
+ out_channels *= 2
104
+ in_size //= 2
105
+ self.out_size = in_size
106
+ self.out_channel = out_channels
107
+
108
+ def forward(self, x):
109
+ concat_tensors = []
110
+ x = self.bn(x)
111
+ for i in range(self.n_encoders):
112
+ _, x = self.layers[i](x)
113
+ concat_tensors.append(_)
114
+ return x, concat_tensors
115
+
116
+
117
+ class Intermediate(nn.Module):
118
+ def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
119
+ super(Intermediate, self).__init__()
120
+ self.n_inters = n_inters
121
+ self.layers = nn.ModuleList()
122
+ self.layers.append(ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum))
123
+ for i in range(self.n_inters-1):
124
+ self.layers.append(ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum))
125
+
126
+ def forward(self, x):
127
+ for i in range(self.n_inters):
128
+ x = self.layers[i](x)
129
+ return x
130
+
131
+
132
+ class Decoder(nn.Module):
133
+ def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
134
+ super(Decoder, self).__init__()
135
+ self.layers = nn.ModuleList()
136
+ self.n_decoders = n_decoders
137
+ for i in range(self.n_decoders):
138
+ out_channels = in_channels // 2
139
+ self.layers.append(ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum))
140
+ in_channels = out_channels
141
+
142
+ def forward(self, x, concat_tensors):
143
+ for i in range(self.n_decoders):
144
+ x = self.layers[i](x, concat_tensors[-1-i])
145
+ return x
146
+
147
+
148
+ class TimbreFilter(nn.Module):
149
+ def __init__(self, latent_rep_channels):
150
+ super(TimbreFilter, self).__init__()
151
+ self.layers = nn.ModuleList()
152
+ for latent_rep in latent_rep_channels:
153
+ self.layers.append(ConvBlockRes(latent_rep[0], latent_rep[0]))
154
+
155
+ def forward(self, x_tensors):
156
+ out_tensors = []
157
+ for i, layer in enumerate(self.layers):
158
+ out_tensors.append(layer(x_tensors[i]))
159
+ return out_tensors
160
+
161
+
162
+ class DeepUnet(nn.Module):
163
+ def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
164
+ super(DeepUnet, self).__init__()
165
+ self.encoder = Encoder(in_channels, N_MELS, en_de_layers, kernel_size, n_blocks, en_out_channels)
166
+ self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks)
167
+ self.tf = TimbreFilter(self.encoder.latent_channels)
168
+ self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks)
169
+
170
+ def forward(self, x):
171
+ x, concat_tensors = self.encoder(x)
172
+ x = self.intermediate(x)
173
+ concat_tensors = self.tf(concat_tensors)
174
+ x = self.decoder(x, concat_tensors)
175
+ return x
176
+
177
+
178
+ class DeepUnet0(nn.Module):
179
+ def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
180
+ super(DeepUnet0, self).__init__()
181
+ self.encoder = Encoder(in_channels, N_MELS, en_de_layers, kernel_size, n_blocks, en_out_channels)
182
+ self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks)
183
+ self.tf = TimbreFilter(self.encoder.latent_channels)
184
+ self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks)
185
+
186
+ def forward(self, x):
187
+ x, concat_tensors = self.encoder(x)
188
+ x = self.intermediate(x)
189
+ x = self.decoder(x, concat_tensors)
190
+ return x
modules/F0Predictor/rmvpe/inference.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from torchaudio.transforms import Resample
4
+
5
+ from .constants import * # noqa: F403
6
+ from .model import E2E0
7
+ from .spec import MelSpectrogram
8
+ from .utils import to_local_average_cents, to_viterbi_cents
9
+
10
+
11
+ class RMVPE:
12
+ def __init__(self, model_path, device=None, dtype = torch.float32, hop_length=160):
13
+ self.resample_kernel = {}
14
+ if device is None:
15
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
16
+ else:
17
+ self.device = device
18
+ model = E2E0(4, 1, (2, 2))
19
+ ckpt = torch.load(model_path, map_location=torch.device(self.device))
20
+ model.load_state_dict(ckpt['model'])
21
+ model = model.to(dtype).to(self.device)
22
+ model.eval()
23
+ self.model = model
24
+ self.dtype = dtype
25
+ self.mel_extractor = MelSpectrogram(N_MELS, SAMPLE_RATE, WINDOW_LENGTH, hop_length, None, MEL_FMIN, MEL_FMAX) # noqa: F405
26
+ self.resample_kernel = {}
27
+
28
+ def mel2hidden(self, mel):
29
+ with torch.no_grad():
30
+ n_frames = mel.shape[-1]
31
+ mel = F.pad(mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode='constant')
32
+ hidden = self.model(mel)
33
+ return hidden[:, :n_frames]
34
+
35
+ def decode(self, hidden, thred=0.03, use_viterbi=False):
36
+ if use_viterbi:
37
+ cents_pred = to_viterbi_cents(hidden, thred=thred)
38
+ else:
39
+ cents_pred = to_local_average_cents(hidden, thred=thred)
40
+ f0 = torch.Tensor([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred]).to(self.device)
41
+ return f0
42
+
43
+ def infer_from_audio(self, audio, sample_rate=16000, thred=0.05, use_viterbi=False):
44
+ audio = audio.unsqueeze(0).to(self.dtype).to(self.device)
45
+ if sample_rate == 16000:
46
+ audio_res = audio
47
+ else:
48
+ key_str = str(sample_rate)
49
+ if key_str not in self.resample_kernel:
50
+ self.resample_kernel[key_str] = Resample(sample_rate, 16000, lowpass_filter_width=128)
51
+ self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device)
52
+ audio_res = self.resample_kernel[key_str](audio)
53
+ mel_extractor = self.mel_extractor.to(self.device)
54
+ mel = mel_extractor(audio_res, center=True).to(self.dtype)
55
+ hidden = self.mel2hidden(mel)
56
+ f0 = self.decode(hidden.squeeze(0), thred=thred, use_viterbi=use_viterbi)
57
+ return f0
modules/F0Predictor/rmvpe/model.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+
3
+ from .constants import * # noqa: F403
4
+ from .deepunet import DeepUnet, DeepUnet0
5
+ from .seq import BiGRU
6
+ from .spec import MelSpectrogram
7
+
8
+
9
+ class E2E(nn.Module):
10
+ def __init__(self, hop_length, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1,
11
+ en_out_channels=16):
12
+ super(E2E, self).__init__()
13
+ self.mel = MelSpectrogram(N_MELS, SAMPLE_RATE, WINDOW_LENGTH, hop_length, None, MEL_FMIN, MEL_FMAX) # noqa: F405
14
+ self.unet = DeepUnet(kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels)
15
+ self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
16
+ if n_gru:
17
+ self.fc = nn.Sequential(
18
+ BiGRU(3 * N_MELS, 256, n_gru), # noqa: F405
19
+ nn.Linear(512, N_CLASS), # noqa: F405
20
+ nn.Dropout(0.25),
21
+ nn.Sigmoid()
22
+ )
23
+ else:
24
+ self.fc = nn.Sequential(
25
+ nn.Linear(3 * N_MELS, N_CLASS), # noqa: F405
26
+ nn.Dropout(0.25),
27
+ nn.Sigmoid()
28
+ )
29
+
30
+ def forward(self, x):
31
+ mel = self.mel(x.reshape(-1, x.shape[-1])).transpose(-1, -2).unsqueeze(1)
32
+ x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
33
+ # x = self.fc(x)
34
+ hidden_vec = 0
35
+ if len(self.fc) == 4:
36
+ for i in range(len(self.fc)):
37
+ x = self.fc[i](x)
38
+ if i == 0:
39
+ hidden_vec = x
40
+ return hidden_vec, x
41
+
42
+
43
+ class E2E0(nn.Module):
44
+ def __init__(self, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1,
45
+ en_out_channels=16):
46
+ super(E2E0, self).__init__()
47
+ self.unet = DeepUnet0(kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels)
48
+ self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
49
+ if n_gru:
50
+ self.fc = nn.Sequential(
51
+ BiGRU(3 * N_MELS, 256, n_gru), # noqa: F405
52
+ nn.Linear(512, N_CLASS), # noqa: F405
53
+ nn.Dropout(0.25),
54
+ nn.Sigmoid()
55
+ )
56
+ else:
57
+ self.fc = nn.Sequential(
58
+ nn.Linear(3 * N_MELS, N_CLASS), # noqa: F405
59
+ nn.Dropout(0.25),
60
+ nn.Sigmoid()
61
+ )
62
+
63
+ def forward(self, mel):
64
+ mel = mel.transpose(-1, -2).unsqueeze(1)
65
+ x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
66
+ x = self.fc(x)
67
+ return x
modules/F0Predictor/rmvpe/seq.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+
4
+ class BiGRU(nn.Module):
5
+ def __init__(self, input_features, hidden_features, num_layers):
6
+ super(BiGRU, self).__init__()
7
+ self.gru = nn.GRU(input_features, hidden_features, num_layers=num_layers, batch_first=True, bidirectional=True)
8
+
9
+ def forward(self, x):
10
+ return self.gru(x)[0]
11
+
12
+
13
+ class BiLSTM(nn.Module):
14
+ def __init__(self, input_features, hidden_features, num_layers):
15
+ super(BiLSTM, self).__init__()
16
+ self.lstm = nn.LSTM(input_features, hidden_features, num_layers=num_layers, batch_first=True, bidirectional=True)
17
+
18
+ def forward(self, x):
19
+ return self.lstm(x)[0]
20
+
modules/F0Predictor/rmvpe/spec.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from librosa.filters import mel
5
+
6
+
7
+ class MelSpectrogram(torch.nn.Module):
8
+ def __init__(
9
+ self,
10
+ n_mel_channels,
11
+ sampling_rate,
12
+ win_length,
13
+ hop_length,
14
+ n_fft=None,
15
+ mel_fmin=0,
16
+ mel_fmax=None,
17
+ clamp = 1e-5
18
+ ):
19
+ super().__init__()
20
+ n_fft = win_length if n_fft is None else n_fft
21
+ self.hann_window = {}
22
+ mel_basis = mel(
23
+ sr=sampling_rate,
24
+ n_fft=n_fft,
25
+ n_mels=n_mel_channels,
26
+ fmin=mel_fmin,
27
+ fmax=mel_fmax,
28
+ htk=True)
29
+ mel_basis = torch.from_numpy(mel_basis).float()
30
+ self.register_buffer("mel_basis", mel_basis)
31
+ self.n_fft = win_length if n_fft is None else n_fft
32
+ self.hop_length = hop_length
33
+ self.win_length = win_length
34
+ self.sampling_rate = sampling_rate
35
+ self.n_mel_channels = n_mel_channels
36
+ self.clamp = clamp
37
+
38
+ def forward(self, audio, keyshift=0, speed=1, center=True):
39
+ factor = 2 ** (keyshift / 12)
40
+ n_fft_new = int(np.round(self.n_fft * factor))
41
+ win_length_new = int(np.round(self.win_length * factor))
42
+ hop_length_new = int(np.round(self.hop_length * speed))
43
+
44
+ keyshift_key = str(keyshift)+'_'+str(audio.device)
45
+ if keyshift_key not in self.hann_window:
46
+ self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(audio.device)
47
+
48
+ fft = torch.stft(
49
+ audio,
50
+ n_fft=n_fft_new,
51
+ hop_length=hop_length_new,
52
+ win_length=win_length_new,
53
+ window=self.hann_window[keyshift_key],
54
+ center=center,
55
+ return_complex=True)
56
+ magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
57
+
58
+ if keyshift != 0:
59
+ size = self.n_fft // 2 + 1
60
+ resize = magnitude.size(1)
61
+ if resize < size:
62
+ magnitude = F.pad(magnitude, (0, 0, 0, size-resize))
63
+ magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
64
+
65
+ mel_output = torch.matmul(self.mel_basis, magnitude)
66
+ log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
67
+ return log_mel_spec
modules/F0Predictor/rmvpe/utils.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from functools import reduce
3
+
4
+ import librosa
5
+ import numpy as np
6
+ import torch
7
+ from torch.nn.modules.module import _addindent
8
+
9
+ from .constants import * # noqa: F403
10
+
11
+
12
+ def cycle(iterable):
13
+ while True:
14
+ for item in iterable:
15
+ yield item
16
+
17
+
18
+ def summary(model, file=sys.stdout):
19
+ def repr(model):
20
+ # We treat the extra repr like the sub-module, one item per line
21
+ extra_lines = []
22
+ extra_repr = model.extra_repr()
23
+ # empty string will be split into list ['']
24
+ if extra_repr:
25
+ extra_lines = extra_repr.split('\n')
26
+ child_lines = []
27
+ total_params = 0
28
+ for key, module in model._modules.items():
29
+ mod_str, num_params = repr(module)
30
+ mod_str = _addindent(mod_str, 2)
31
+ child_lines.append('(' + key + '): ' + mod_str)
32
+ total_params += num_params
33
+ lines = extra_lines + child_lines
34
+
35
+ for name, p in model._parameters.items():
36
+ if hasattr(p, 'shape'):
37
+ total_params += reduce(lambda x, y: x * y, p.shape)
38
+
39
+ main_str = model._get_name() + '('
40
+ if lines:
41
+ # simple one-liner info, which most builtin Modules will use
42
+ if len(extra_lines) == 1 and not child_lines:
43
+ main_str += extra_lines[0]
44
+ else:
45
+ main_str += '\n ' + '\n '.join(lines) + '\n'
46
+
47
+ main_str += ')'
48
+ if file is sys.stdout:
49
+ main_str += ', \033[92m{:,}\033[0m params'.format(total_params)
50
+ else:
51
+ main_str += ', {:,} params'.format(total_params)
52
+ return main_str, total_params
53
+
54
+ string, count = repr(model)
55
+ if file is not None:
56
+ if isinstance(file, str):
57
+ file = open(file, 'w')
58
+ print(string, file=file)
59
+ file.flush()
60
+
61
+ return count
62
+
63
+
64
+ def to_local_average_cents(salience, center=None, thred=0.05):
65
+ """
66
+ find the weighted average cents near the argmax bin
67
+ """
68
+
69
+ if not hasattr(to_local_average_cents, 'cents_mapping'):
70
+ # the bin number-to-cents mapping
71
+ to_local_average_cents.cents_mapping = (
72
+ 20 * torch.arange(N_CLASS) + CONST).to(salience.device) # noqa: F405
73
+
74
+ if salience.ndim == 1:
75
+ if center is None:
76
+ center = int(torch.argmax(salience))
77
+ start = max(0, center - 4)
78
+ end = min(len(salience), center + 5)
79
+ salience = salience[start:end]
80
+ product_sum = torch.sum(
81
+ salience * to_local_average_cents.cents_mapping[start:end])
82
+ weight_sum = torch.sum(salience)
83
+ return product_sum / weight_sum if torch.max(salience) > thred else 0
84
+ if salience.ndim == 2:
85
+ return torch.Tensor([to_local_average_cents(salience[i, :], None, thred) for i in
86
+ range(salience.shape[0])]).to(salience.device)
87
+
88
+ raise Exception("label should be either 1d or 2d ndarray")
89
+
90
+ def to_viterbi_cents(salience, thred=0.05):
91
+ # Create viterbi transition matrix
92
+ if not hasattr(to_viterbi_cents, 'transition'):
93
+ xx, yy = torch.meshgrid(range(N_CLASS), range(N_CLASS)) # noqa: F405
94
+ transition = torch.maximum(30 - abs(xx - yy), 0)
95
+ transition = transition / transition.sum(axis=1, keepdims=True)
96
+ to_viterbi_cents.transition = transition
97
+
98
+ # Convert to probability
99
+ prob = salience.T
100
+ prob = prob / prob.sum(axis=0)
101
+
102
+ # Perform viterbi decoding
103
+ path = librosa.sequence.viterbi(prob.detach().cpu().numpy(), to_viterbi_cents.transition).astype(np.int64)
104
+
105
+ return torch.Tensor([to_local_average_cents(salience[i, :], path[i], thred) for i in
106
+ range(len(path))]).to(salience.device)
107
+
modules/attentions.py CHANGED
@@ -1,18 +1,17 @@
1
- import copy
2
  import math
3
- import numpy as np
4
  import torch
5
  from torch import nn
6
  from torch.nn import functional as F
7
 
8
  import modules.commons as commons
9
- import modules.modules as modules
10
  from modules.modules import LayerNorm
11
 
12
 
13
  class FFT(nn.Module):
14
  def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
15
- proximal_bias=False, proximal_init=True, **kwargs):
16
  super().__init__()
17
  self.hidden_channels = hidden_channels
18
  self.filter_channels = filter_channels
@@ -22,7 +21,11 @@ class FFT(nn.Module):
22
  self.p_dropout = p_dropout
23
  self.proximal_bias = proximal_bias
24
  self.proximal_init = proximal_init
25
-
 
 
 
 
26
  self.drop = nn.Dropout(p_dropout)
27
  self.self_attn_layers = nn.ModuleList()
28
  self.norm_layers_0 = nn.ModuleList()
@@ -37,14 +40,25 @@ class FFT(nn.Module):
37
  FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
38
  self.norm_layers_1.append(LayerNorm(hidden_channels))
39
 
40
- def forward(self, x, x_mask):
41
  """
42
  x: decoder input
43
  h: encoder output
44
  """
 
 
 
45
  self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
46
  x = x * x_mask
47
  for i in range(self.n_layers):
 
 
 
 
 
 
 
 
48
  y = self.self_attn_layers[i](x, x, self_attn_mask)
49
  y = self.drop(y)
50
  x = self.norm_layers_0[i](x + y)
@@ -243,7 +257,7 @@ class MultiHeadAttention(nn.Module):
243
  return ret
244
 
245
  def _get_relative_embeddings(self, relative_embeddings, length):
246
- max_relative_position = 2 * self.window_size + 1
247
  # Pad first before slice to avoid using cond ops.
248
  pad_length = max(length - (self.window_size + 1), 0)
249
  slice_start_position = max((self.window_size + 1) - length, 0)
 
 
1
  import math
2
+
3
  import torch
4
  from torch import nn
5
  from torch.nn import functional as F
6
 
7
  import modules.commons as commons
8
+ from modules.DSConv import weight_norm_modules
9
  from modules.modules import LayerNorm
10
 
11
 
12
  class FFT(nn.Module):
13
  def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
14
+ proximal_bias=False, proximal_init=True, isflow = False, **kwargs):
15
  super().__init__()
16
  self.hidden_channels = hidden_channels
17
  self.filter_channels = filter_channels
 
21
  self.p_dropout = p_dropout
22
  self.proximal_bias = proximal_bias
23
  self.proximal_init = proximal_init
24
+ if isflow:
25
+ cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2*hidden_channels*n_layers, 1)
26
+ self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
27
+ self.cond_layer = weight_norm_modules(cond_layer, name='weight')
28
+ self.gin_channels = kwargs["gin_channels"]
29
  self.drop = nn.Dropout(p_dropout)
30
  self.self_attn_layers = nn.ModuleList()
31
  self.norm_layers_0 = nn.ModuleList()
 
40
  FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
41
  self.norm_layers_1.append(LayerNorm(hidden_channels))
42
 
43
+ def forward(self, x, x_mask, g = None):
44
  """
45
  x: decoder input
46
  h: encoder output
47
  """
48
+ if g is not None:
49
+ g = self.cond_layer(g)
50
+
51
  self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
52
  x = x * x_mask
53
  for i in range(self.n_layers):
54
+ if g is not None:
55
+ x = self.cond_pre(x)
56
+ cond_offset = i * 2 * self.hidden_channels
57
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
58
+ x = commons.fused_add_tanh_sigmoid_multiply(
59
+ x,
60
+ g_l,
61
+ torch.IntTensor([self.hidden_channels]))
62
  y = self.self_attn_layers[i](x, x, self_attn_mask)
63
  y = self.drop(y)
64
  x = self.norm_layers_0[i](x + y)
 
257
  return ret
258
 
259
  def _get_relative_embeddings(self, relative_embeddings, length):
260
+ 2 * self.window_size + 1
261
  # Pad first before slice to avoid using cond ops.
262
  pad_length = max(length - (self.window_size + 1), 0)
263
  slice_start_position = max((self.window_size + 1) - length, 0)
modules/commons.py CHANGED
@@ -1,9 +1,9 @@
1
  import math
2
- import numpy as np
3
  import torch
4
- from torch import nn
5
  from torch.nn import functional as F
6
 
 
7
  def slice_pitch_segments(x, ids_str, segment_size=4):
8
  ret = torch.zeros_like(x[:, :segment_size])
9
  for i in range(x.size(0)):
@@ -24,10 +24,12 @@ def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
24
 
25
  def init_weights(m, mean=0.0, std=0.01):
26
  classname = m.__class__.__name__
27
- if classname.find("Conv") != -1:
 
 
 
28
  m.weight.data.normal_(mean, std)
29
 
30
-
31
  def get_padding(kernel_size, dilation=1):
32
  return int((kernel_size*dilation - dilation)/2)
33
 
@@ -134,12 +136,6 @@ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
134
  return acts
135
 
136
 
137
- def convert_pad_shape(pad_shape):
138
- l = pad_shape[::-1]
139
- pad_shape = [item for sublist in l for item in sublist]
140
- return pad_shape
141
-
142
-
143
  def shift_1d(x):
144
  x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
145
  return x
@@ -157,7 +153,6 @@ def generate_path(duration, mask):
157
  duration: [b, 1, t_x]
158
  mask: [b, 1, t_y, t_x]
159
  """
160
- device = duration.device
161
 
162
  b, _, t_y, t_x = mask.shape
163
  cum_duration = torch.cumsum(duration, -1)
 
1
  import math
2
+
3
  import torch
 
4
  from torch.nn import functional as F
5
 
6
+
7
  def slice_pitch_segments(x, ids_str, segment_size=4):
8
  ret = torch.zeros_like(x[:, :segment_size])
9
  for i in range(x.size(0)):
 
24
 
25
  def init_weights(m, mean=0.0, std=0.01):
26
  classname = m.__class__.__name__
27
+ if "Depthwise_Separable" in classname:
28
+ m.depth_conv.weight.data.normal_(mean, std)
29
+ m.point_conv.weight.data.normal_(mean, std)
30
+ elif classname.find("Conv") != -1:
31
  m.weight.data.normal_(mean, std)
32
 
 
33
  def get_padding(kernel_size, dilation=1):
34
  return int((kernel_size*dilation - dilation)/2)
35
 
 
136
  return acts
137
 
138
 
 
 
 
 
 
 
139
  def shift_1d(x):
140
  x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
141
  return x
 
153
  duration: [b, 1, t_x]
154
  mask: [b, 1, t_y, t_x]
155
  """
 
156
 
157
  b, _, t_y, t_x = mask.shape
158
  cum_duration = torch.cumsum(duration, -1)
modules/enhancer.py CHANGED
@@ -1,10 +1,12 @@
1
  import numpy as np
2
  import torch
3
  import torch.nn.functional as F
4
- from vdecoder.nsf_hifigan.nvSTFT import STFT
5
- from vdecoder.nsf_hifigan.models import load_model
6
  from torchaudio.transforms import Resample
7
 
 
 
 
 
8
  class Enhancer:
9
  def __init__(self, enhancer_type, enhancer_ckpt, device=None):
10
  if device is None:
 
1
  import numpy as np
2
  import torch
3
  import torch.nn.functional as F
 
 
4
  from torchaudio.transforms import Resample
5
 
6
+ from vdecoder.nsf_hifigan.models import load_model
7
+ from vdecoder.nsf_hifigan.nvSTFT import STFT
8
+
9
+
10
  class Enhancer:
11
  def __init__(self, enhancer_type, enhancer_ckpt, device=None):
12
  if device is None:
modules/losses.py CHANGED
@@ -1,7 +1,4 @@
1
- import torch
2
- from torch.nn import functional as F
3
-
4
- import modules.commons as commons
5
 
6
 
7
  def feature_loss(fmap_r, fmap_g):
 
1
+ import torch
 
 
 
2
 
3
 
4
  def feature_loss(fmap_r, fmap_g):